Post‐inflammatory administration of N‐acetylcysteine reduces inflammation and alters receptor levels in a cellular model of Parkinson's disease

Author:

Kaya Zeynep Bengisu12ORCID,Karakoc Elif2ORCID,McLean Pamela J.1ORCID,Saka Esen3ORCID,Atilla Pergin2ORCID

Affiliation:

1. Department of Neuroscience Mayo Clinic Jacksonville Florida USA

2. Department of Histology and Embryology Hacettepe University Faculty of Medicine Ankara Turkey

3. Department of Neurology Hacettepe University Faculty of Medicine Ankara Turkey

Abstract

AbstractParkinson's disease (PD) is a complex, multifactorial neurodegenerative disease with a prevalence of 1% over the age of 55. Neuropathological hallmarks of PD include the loss of dopaminergic neurons in the substantia nigra pars compacta and the accumulation of Lewy bodies that contain a variety of proteins and lipids including alpha‐synuclein (α‐syn). Although the formation of α‐syn occurs intracellularly, it can also be found in the extracellular space where it can be taken up by neighboring cells. Toll‐like receptor 2 (TLR2) is an immune system receptor that has been shown to recognize extracellular α‐syn and modulate its uptake by other cells. Lymphocyte‐activation gene 3 (LAG3), an immune checkpoint receptor, has also been proposed to play a role in extracellular α‐syn internalization; however, a recent study has disputed this role. Internalized α‐syn can trigger expression and secretion of inflammatory cytokines such as tumor necrosis factor alpha (TNF‐α), interleukin (IL)‐1β, IL‐2, and IL‐6 and induce neuroinflammation, apoptosis, and mitophagy that results in cellular death. In this study, we tested if N‐acetylcysteine (NAC), an anti‐inflammatory and anti‐carcinogenic drug, can circumvent the detrimental effects of neuroinflammation and induce an anti‐inflammatory response by modulating transcription and expression of TLR2 and LAG3 receptors. Cells overexpressing wild‐type α‐syn were treated with TNF‐α to induce inflammation followed by NAC to inhibit the deleterious effects of TNF‐α‐induced inflammation and apoptosis. SNCA gene transcription and α‐syn protein expression were validated by q‐PCR and Western blot (WB), respectively. Cell viability was measured, and apoptosis was evaluated by WB and terminal deoxynucleotidyl transferase nick end labeling methods. Alterations in LAG3 and TLR2 receptor levels were evaluated by immunofluorescent labeling, WB, and q‐PCR. TNF‐α not only increased inflammation but also increased endogenous and overexpressed α‐syn levels. NAC treatment decreased expression of TLR2 and increased transcription of LAG3 receptor and diminished inflammation‐mediated toxicity and cell death. Here, we demonstrate that NAC can reduce neuroinflammation that occurs as a result of alpha‐synuclein overexpression, via a TLR2‐associated pathway, making it a promising candidate for therapeutic intervention. Further studies are needed to elucidate molecular mechanisms and pathways related to neuroinflammation in PD and to develop possible new therapeutic approaches to slow the clinical progression of PD.

Publisher

Wiley

Subject

Cancer Research,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3