High and low permeability of human pluripotent stem cell–derived blood–brain barrier models depend on epithelial or endothelial features

Author:

Girard Stéphane D.12,Julien‐Gau Ingrid2,Molino Yves2,Combes Benjamin F.2,Greetham Louise1,Khrestchatisky Michel1,Nivet Emmanuel1ORCID

Affiliation:

1. Institute of NeuroPhysiopathology, INP CNRS, Aix‐Marseille University Marseille France

2. Faculty of Medicine VECT‐HORUS SAS Marseille France

Abstract

AbstractThe search for reliable human blood–brain barrier (BBB) models represents a challenge for the development/testing of strategies aiming to enhance brain delivery of drugs. Human‐induced pluripotent stem cells (hiPSCs) have raised hopes in the development of predictive BBB models. Differentiating strategies are thus required to generate endothelial cells (ECs), a major component of the BBB. Several hiPSC‐based protocols have reported the generation of in vitro models with significant differences in barrier properties. We studied in depth the properties of iPSCs byproducts from two protocols that have been established to yield these in vitro barrier models. Our analysis/study reveals that iPSCs derivatives endowed with EC features yield high permeability models while the cells that exhibit outstanding barrier properties show principally epithelial cell‐like (EpC) features. We found that models containing EpC‐like cells express tight junction proteins, transporters/efflux pumps and display a high functional tightness with very low permeability, which are features commonly shared between BBB and epithelial barriers. Our study demonstrates that hiPSC‐based BBB models need extensive characterization beforehand and that a reliable human BBB model containing EC‐like cells and displaying low permeability is still needed.

Funder

Agence Nationale de la Recherche

Aix-Marseille Université

Publisher

Wiley

Subject

Genetics,Molecular Biology,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3