CCN6 influences transcription and controls mitochondrial mass and muscle organization

Author:

Ganguly Ananya1,Padhan Deepesh Kumar1,Sengupta Archya1,Chakraborty Pritam12,Sen Malini1

Affiliation:

1. Cancer Biology and Inflammatory Disorder Division CSIR‐Indian Institute of Chemical Biology Kolkata India

2. Biochemistry and Molecular Biology Southern Illinois University USA

Abstract

AbstractMutations in Cellular Communication Network Factor 6 (CCN6) are linked to the debilitating musculoskeletal disease Progressive Pseudo Rheumatoid Dysplasia (PPRD), which disrupts mobility. Yet, much remains unknown about CCN6 function at the molecular level. In this study, we revealed a new function of CCN6 in transcriptional regulation. We demonstrated that CCN6 localizes to chromatin and associates with RNA Polymerase II in human chondrocyte lines. Using zebrafish as a model organism we validated the nuclear presence of CCN6 and its association with RNA Polymerase II in different developmental stages from 10 hpf embryo to adult fish muscle. In concurrence with these findings, we confirmed the requirement of CCN6 in the transcription of several genes encoding mitochondrial electron transport complex proteins in the zebrafish, both in the embryonic stages and in the adult muscle. Reduction in the expression of these genes upon morpholino‐mediated knockdown of CCN6 protein expression led to reduced mitochondrial mass, which correlated with defective myotome organization during zebrafish muscle development. Overall, this study suggests that the developmental musculoskeletal abnormalities linked with PPRD could be contributed at least partly by impaired expression of genes encoding mitochondrial electron transport complexes due to defects in CCN6 associated transcriptional regulation.

Funder

Department of Biotechnology, Government of West Bengal

Science and Engineering Research Board

Publisher

Wiley

Subject

Genetics,Molecular Biology,Biochemistry,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CCN proteins: opportunities for clinical studies—a personal perspective;Journal of Cell Communication and Signaling;2023-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3