Caveolin‐1 promotes mitochondrial health and limits mitochondrial ROS through ROCK/AMPK regulation of basal mitophagic flux

Author:

Timmins Logan R.1,Ortiz‐Silva Milene1,Joshi Bharat1,Li Y. Lydia1,Dickson Fiona H.1,Wong Timothy H.1,Vandevoorde Kurt R.1,Nabi Ivan R.12ORCID

Affiliation:

1. Department of Cellular & Physiological Sciences Life Sciences Institute, University of British Columbia Vancouver British Columbia Canada

2. School of Biomedical Engineering University of British Columbia Vancouver British Columbia Canada

Abstract

AbstractCaveolin‐1 (CAV1), the main structural component of caveolae, is phosphorylated at tyrosine‐14 (pCAV1), regulates signal transduction, mechanotransduction, and mitochondrial function, and plays contrasting roles in cancer progression. We report that CRISPR/Cas9 knockout (KO) of CAV1 increases mitochondrial oxidative phosphorylation, increases mitochondrial potential, and reduces ROS in MDA‐MB‐231 triple‐negative breast cancer cells. Supporting a role for pCAV1, these effects are reversed upon expression of CAV1 phosphomimetic CAV1 Y14D but not non‐phosphorylatable CAV1 Y14F. pCAV1 is a known effector of Rho‐associated kinase (ROCK) signaling and ROCK1/2 signaling mediates CAV1 promotion of increased mitochondrial potential and decreased ROS production in MDA‐MB‐231 cells. CAV1/ROCK control of mitochondrial potential and ROS is caveolae‐independent as similar results were observed in PC3 prostate cancer cells lacking caveolae. Increased mitochondrial health and reduced ROS in CAV1 KO MDA‐MB‐231 cells were reversed by knockdown of the autophagy protein ATG5, mitophagy regulator PINK1 or the mitochondrial fission protein Drp1 and therefore due to mitophagy. Use of the mitoKeima mitophagy probe confirmed that CAV1 signaling through ROCK inhibited basal mitophagic flux. Activation of AMPK, a major mitochondrial homeostasis protein inhibited by ROCK, is inhibited by CAV1‐ROCK signaling and mediates the increased mitochondrial potential, decreased ROS, and decreased basal mitophagy flux observed in wild‐type MDA‐MB‐231 cells. CAV1 regulation of mitochondrial health and ROS in cancer cells therefore occurs via ROCK‐dependent inhibition of AMPK. This study therefore links pCAV1 signaling activity at the plasma membrane with its regulation of mitochondrial activity and cancer cell metabolism through control of mitophagy.

Funder

Canadian Institutes of Health Research

Publisher

Wiley

Subject

Genetics,Molecular Biology,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3