Integrating network pharmacology and transcriptomic omics reveals that akebia saponin D attenuates neutrophil extracellular traps‐induced neuroinflammation via NTSR1/PKAc/PAD4 pathway after intracerebral hemorrhage

Author:

Gu Lingui1,Ye Liguo1,Chen Yihao1,Deng Congcong1,Zhang Xin1,Chang Jianbo1,Feng Ming1,Wei Junji1,Bao Xinjie1,Wang Renzhi12ORCID

Affiliation:

1. Department of Neurosurgery Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China

2. Chinese University of Hong Kong (Shenzhen) School of Medicine, People’s Republic of China, Shenzhen China

Abstract

AbstractNeutrophils and their production of neutrophil extracellular traps (NETs) significantly contribute to neuroinflammation and brain damage after intracerebral hemorrhage (ICH). Although Akebia saponin D (ASD) demonstrates strong anti‐inflammatory activities and blood–brain barrier permeability, its role in regulating NETs formation and neuroinflammation following ICH is uncharted. Our research focused on unraveling the influence of ASD on neuroinflammation mediated by NETs and the mechanisms involved. We found that increased levels of peripheral blood neutrophils post‐ICH are correlated with worse prognostic outcomes. Through network pharmacology, we identified ASD as a promising therapeutic target for ICH. ASD administration significantly improved neurobehavioral performance and decreased NETs production in neutrophils. Furthermore, ASD was shown to upregulate the membrane protein NTSR1 and activate the cAMP signaling pathway, confirmed through transcriptome sequencing, western blot, and immunofluorescence. Interestingly, the NTSR1 inhibitor SR48692 significantly nullified ASD's anti‐NETs effects and dampened cAMP pathway activation. Mechanistically, suppression of PKAc via H89 negated ASD's anti‐NETs effects but did not affect NTSR1. Our study suggests that ASD may reduce NETs formation and neuroinflammation, potentially involving the NTSR1/PKAc/PAD4 pathway post‐ICH, underlining the potential of ASD in mitigating neuroinflammation through its anti‐NETs properties.

Publisher

Wiley

Subject

Genetics,Molecular Biology,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3