GNAQ R183Q somatic mutation contributes to aberrant arteriovenous specification in Sturge–Weber syndrome through Notch signaling

Author:

Huang Lulu12ORCID,Sun Hao12ORCID,Liu Yixin12ORCID,Xu Li12ORCID,Hu Menghan3ORCID,Yang Yijie12ORCID,Wang Ning12ORCID,Wu Yue12ORCID,Guo Wenyi12ORCID

Affiliation:

1. Department of Ophthalmology Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China

2. Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology Shanghai China

3. Shanghai Key Laboratory of Multidimensional Information Processing East China Normal University Shanghai China

Abstract

AbstractEpiscleral vasculature malformation is a significant feature of Sturge–Weber syndrome (SWS) secondary glaucoma, the density and diameter of which are correlated with increased intraocular pressure. We previously reported that the GNAQ R183Q somatic mutation was located in the SWS episclera. However, the mechanism by which GNAQ R183Q leads to episcleral vascular malformation remains poorly understood. In this study, we investigated the correlation between GNAQ R183Q and episcleral vascular malformation via surgical specimens, human umbilical vein endothelial cells (HUVECs), and the HUVEC cell line EA.hy926. Our findings demonstrated a positive correlation between episcleral vessel diameter and the frequency of the GNAQ R183Q variant. Furthermore, the upregulation of genes from the Notch signaling pathway and abnormal coexpression of the arterial marker EphrinB2 and venous marker EphB4 were demonstrated in the scleral vasculature of SWS. Analysis of HUVECs overexpressing GNAQ R183Q in vitro confirmed the upregulation of Notch signaling and arterial markers. In addition, knocking down of Notch1 diminished the upregulation of arterial markers induced by GNAQ R183Q. Our findings strongly suggest that GNAQ R183Q leads to malformed episcleral vasculatures through Notch‐induced aberrant arteriovenous specification. These insights into the molecular basis of episcleral vascular malformation will provide new pathways for the development of effective treatments for SWS secondary glaucoma.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Genetics,Molecular Biology,Biochemistry,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Update October 2023;Lymphatic Research and Biology;2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3