Assessing Acinetobacter baumannii virulence and treatment with a bacteriophage using zebrafish embryos

Author:

Neto Sofia123,Vieira Ana1,Oliveira Hugo23ORCID,Espiña Begoña1

Affiliation:

1. International Iberian Nanotechnology Laboratory (INL) Braga Portugal

2. CEB—Center of Biological Engineering University of Minho Braga Portugal

3. LABBELS—Associate Laboratory Guimarães Portugal

Abstract

AbstractAcinetobacter baumannii is the leading bacteria causative of nosocomial infections, with high fatality rates, mostly due to their multi‐resistance to antibiotics. The capsular polysaccharide (k‐type) is a major virulence factor. Bacteriophages are viruses that specifically infect bacteria and have been used to control drug‐resistant bacterial pathogens. In particular, A. baumannii phages can recognize specific capsules, from a diversity of >125 that exist. This high specificity demands the in vivo identification of the most virulent A. baumannii k‐types that need to be targeted by phage therapy. Currently, the zebrafish embryo has particularly attained interest for in vivo infection modeling. In this study, an A. baumannii infection was successfully established, through the bath immersion of tail‐injured zebrafish embryos, to study the virulence of eight capsule types (K1, K2, K9, K32, K38, K44, K45, and K67). The model revealed itself as capable of discerning the most virulent (K2, K9, K32, and K45), middle (K1, K38, and K67), and the less virulent (K44) strains. Additionally, the infection of the most virulent strains was controlled in vivo resorting to the same technique, with previously identified phages (K2, K9, K32, and K45 phages). Phage treatments were able to increase the average survival from 35.2% to up to 74.1% (K32 strain). All the phages performed equally well. Collectively, the results show the potential of the model to not only evaluate virulence of bacteria such as A. baumannii but also assess novel treatments' effectiveness.

Funder

European Regional Development Fund

Publisher

Wiley

Subject

Genetics,Molecular Biology,Biochemistry,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Battle Against Antibiotic Resistance: Novel Therapeutic Options for Acinetobacter baumannii;Acinetobacter baumannii - The Rise of a Resistant Pathogen [Working Title];2023-11-23

2. How to treat severe Acinetobacter baumannii infections;Current Opinion in Infectious Diseases;2023-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3