Lysine‐372‐dependent SUMOylation inhibits the enzymatic activity of glutamine synthases

Author:

Ling Ting12,Li Siyi13,Chen Huan1,Wang Qiuping1,Shi Jing14,Li Yirong12,Bao Wenjun12,Liang Kunming14,Piao Hai‐long1234ORCID

Affiliation:

1. Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian China

2. Department of analytical chemistry University of Chinese Academy of Sciences Beijing China

3. Cancer Research Institute, Department of Thoracic Surgery Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute Shenyang China

4. Department of Biochemistry & Molecular Biology, School of Life Sciences China Medical University Shenyang China

Abstract

AbstractGlutamine synthetase (GS) is a crucial enzyme involved in de novo synthesis of glutamine and participates in several biological processes, including nitrogen metabolism, nucleotide synthesis, and amino acid synthesis. Post‐translational modification makes GS more adaptable to the needs of cells, and acetylation modification of GS at double sites has attracted considerable attention. Despite very intensive research, how SUMOylation affects GS activity at a molecular level remains unclear. Here, we report that previously undiscovered GS SUMOylation which is deficient mutant K372R of GS exhibits more bluntness under glutamine starvation. Mechanistically, glutamine deprivation triggers the GS SUMOylation, and this SUMOylation impaired the protein stability of GS, within a concomitant decrease in enzymatic activity. In addition, we identified SAE1, Ubc9, and PIAS1 as the assembly enzymes of GS SUMOylation respectively. Furthermore, Senp1/2 functions as a SUMO‐specific protease to reverse the SUMOylation of GS. This study provides the first evidence that SUMOylation serves as a regulatory mechanism for determining the GS enzymatic activity, contributing to understanding the GS regulation roles in various cellular and pathophysiological processes.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Genetics,Molecular Biology,Biochemistry,Biotechnology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3