Multi‐organ single‐cell RNA sequencing in mice reveals early hyperglycemia responses that converge on fibroblast dysregulation

Author:

Braithwaite Adam T.1ORCID,Akbar Naveed1ORCID,Pezzolla Daniela1ORCID,Paget Daan1ORCID,Krausgruber Thomas23ORCID,Bock Christoph23ORCID,Carnicer Ricardo1ORCID,Choudhury Robin P.1ORCID

Affiliation:

1. Division of Cardiovascular Medicine, Radcliffe Department of Medicine University of Oxford Oxford UK

2. CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences Vienna Austria

3. Medical University of Vienna Institute of Artificial Intelligence, Center for Medical Data Science Vienna Austria

Abstract

AbstractDiabetes causes a range of complications that can affect multiple organs. Hyperglycemia is an important driver of diabetes‐associated complications, mediated by biological processes such as dysfunction of endothelial cells, fibrosis, and alterations in leukocyte number and function. Here, we dissected the transcriptional response of key cell types to hyperglycemia across multiple tissues using single‐cell RNA sequencing (scRNA‐seq) and identified conserved, as well as organ‐specific, changes associated with diabetes complications. By studying an early time point of diabetes, we focus on biological processes involved in the initiation of the disease, before the later organ‐specific manifestations had supervened. We used a mouse model of type 1 diabetes and performed scRNA‐seq on cells isolated from the heart, kidney, liver, and spleen of streptozotocin‐treated and control male mice after 8 weeks and assessed differences in cell abundance, gene expression, pathway activation, and cell signaling across organs and within organs. In response to hyperglycemia, endothelial cells, macrophages, and monocytes displayed organ‐specific transcriptional responses, whereas fibroblasts showed similar responses across organs, exhibiting altered metabolic gene expression and increased myeloid‐like fibroblasts. Furthermore, we found evidence of endothelial dysfunction in the kidney, and of endothelial‐to‐mesenchymal transition in streptozotocin‐treated mouse organs. In summary, our study represents the first single‐cell and multi‐organ analysis of early dysfunction in type 1 diabetes‐associated hyperglycemia, and our large‐scale dataset (comprising 67 611 cells) will serve as a starting point, reference atlas, and resource for further investigating the events leading to early diabetic disease.

Funder

British Heart Foundation

Novo Nordisk UK Research Foundation

Nuffield Foundation

Wellcome Trust

Publisher

Wiley

Subject

Genetics,Molecular Biology,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3