Affiliation:
1. Division of Endocrinology, Diabetes, & Metabolism Comprehensive Diabetes Center Heersink School of Medicine University of Alabama at Birmingham Birmingham Alabama USA
2. Department of Biochemistry University of Wisconsin Madison Wisconsin USA
Abstract
AbstractStimulus‐coupled insulin secretion from the pancreatic islet β‐cells involves the fusion of insulin granules to the plasma membrane (PM) via SNARE complex formation—a cellular process key for maintaining whole‐body glucose homeostasis. Less is known about the role of endogenous inhibitors of SNARE complexes in insulin secretion. We show that an insulin granule protein synaptotagmin‐9 (Syt9) deletion in mice increased glucose clearance and plasma insulin levels without affecting insulin action compared to the control mice. Upon glucose stimulation, increased biphasic and static insulin secretion were observed from ex vivo islets due to Syt9 loss. Syt9 colocalizes and binds with tomosyn‐1 and the PM syntaxin‐1A (Stx1A); Stx1A is required for forming SNARE complexes. Syt9 knockdown reduced tomosyn‐1 protein abundance via proteasomal degradation and binding of tomosyn‐1 to Stx1A. Furthermore, Stx1A‐SNARE complex formation was increased, implicating Syt9‐tomosyn‐1‐Stx1A complex is inhibitory in insulin secretion. Rescuing tomosyn‐1 blocked the Syt9‐knockdown‐mediated increases in insulin secretion. This shows that the inhibitory effects of Syt9 on insulin secretion are mediated by tomosyn‐1. We report a molecular mechanism by which β‐cells modulate their secretory capacity rendering insulin granules nonfusogenic by forming the Syt9‐tomosyn‐1‐Stx1A complex. Altogether, Syt9 loss in β‐cells decreases tomosyn‐1 protein abundance, increasing the formation of Stx1A‐SNARE complexes, insulin secretion, and glucose clearance. These outcomes differ from the previously published work that identified Syt9 has either a positive or no effect of Syt9 on insulin secretion. Future work using β‐cell‐specific deletion of Syt9 mice is key for establishing the role of Syt9 in insulin secretion.
Funder
National Institute of Diabetes and Digestive and Kidney Diseases
Subject
Genetics,Molecular Biology,Biochemistry,Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献