Pure and Cobalt-Modified ZnO Nanostructures Prepared by a New Synthesis Route Applied to Environmental Remediation

Author:

Nobrega ErykaORCID,de Araújo KelvinORCID,Moreira AiltonORCID,de Oliveira Regiane,da Silva GelsonORCID,Blaskievicz SirlonORCID,Soares LeandroORCID,Lemos SherlanORCID,Mascaro LuciaORCID,Pereira ErnestoORCID

Abstract

Pure and cobalt-doped 3D ZnO were produced using the microwave (MW)- ultraviolet (UV)-visible (Vis) radiation-assisted hydrothermal method (MW-UV-Vis HM). Using experimental design, the effects of cobalt and UV-Vis radiation during the synthesis stage on the physicochemical properties of the materials were evaluated with different characterization techniques such as X-ray diffraction, scanning and transmission electron microscopy, diffuse reflectance, and electrochemistry. The presence of cobalt had a great influence on the reduction of charge donors in the ZnO matrix and had their photocatalytic properties improved when produced under the effect of UV-Vis radiation. The catalytic activity of the materials has been verified in important environmental remediation reactions, such as the electrochemical reduction of CO2 and the photocatalytic degradation of emerging pollutants. The results achieved in this study show competitive efficiency values for CO2 reduction (97%) and photocatalytic degradation (91%) of emerging pollutants in natural waters, illustrating the great versatility of the produced material in distinct applications.

Publisher

Sociedade Brasileira de Quimica (SBQ)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3