3D Modeling of Leachate Distribution Around Zone E of Batu Layang Landfill, Pontianak, West Kalimantan, Indonesia Using the Geoelectrical Method

Author:

Soeryamassoeka Stefanus Barlian,Meilasari Fitriana,Sutrisno Hendri,Yuniarti Erni,Zulfian Zulfian

Abstract

Open dumping systems as implemented by the Batu Layang landfill in Pontianak City, Indonesia can cause leachate pollution in the environment. The constituent soil condition affects the leachate distribution into the ground. One of the landfill constituents of the soil at the site of the Batu Layang landfill is peat soil, in which organic content (>75%), porosity, and permeability are high. Leachate that seeps below the earth’s surface can cause soil and groundwater contamination. Meanwhile, people around landfills use groundwater for their daily needs and use the land around the landfill to grow papaya, banana, sugarcane, and taro. Therefore it is necessary to prevent and minimize leachate spread. One of the efforts that can be done is to model the leachate distribution. In this study, leachate distribution modeling was done with a geoelectric method, the Wenner configuration, with a smallest electrode distance of 5 m. There were six tracks, with a length of 195 m each. The model obtained from this study was a 3D resistivity section. 3D data processing was done using the inverse distance method. The results showed that a resistivity value ≤10 Ωm identified the soil layer contaminated with leachate. The contaminated soil layers were estimated to be peat, clay, and loamy sand. The leachate distribution is suspected of seeping up to 195 m south of the landfill. The leachate distribution into the soil was estimated from the surface to 33.8 m.

Publisher

The Institute for Research and Community Services (LPPM) ITB

Subject

General Engineering,Engineering (miscellaneous),Mechanical Engineering,Civil and Structural Engineering,Chemical Engineering (miscellaneous),Environmental Science (miscellaneous),Materials Science (miscellaneous),Earth-Surface Processes

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of Bituminous Layer Modulus and Soil Layer Properties on the Modulus of Granular Layer;Journal of Engineering and Technological Sciences;2024-08-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3