Evaluation of Crash Energy Management of the First-Developed High-Speed Train in Indonesia

Author:

Rizal Karisma,Syaifudin Achmad

Abstract

Crash energy management is an essential evaluation stage of passive safety systems for high-speed trains. As a part of crash energy management, crash energy absorption has been researched for the last decade. The development of its components has also been performed individually. This paper presents a numerical analysis of the configuration of an energy absorption system for high-speed trains developed in Indonesia. Three placement configurations of the energy absorption system were investigated using explicit dynamic analysis in ANSYS. Total energy absorption, deceleration pulse, and deformation length were considered in the evaluation of the numerical analysis results. The collision criteria used in this study were according to EN 15227 and CFR 238 standards. This study revealed that the existing design could fulfill the energy absorption and average deceleration pulse required by EN 15227. Nevertheless, the existing design could not fulfill the energy absorption and maximum deceleration pulse required by CFR 238. It was also indicated that by positioning the anti-climber slightly forward, changing the deformation force of the crush box, and adding an impactor, the quality of energy absorption and average deceleration pulse could be improved.

Publisher

The Institute for Research and Community Services (LPPM) ITB

Subject

General Engineering,Engineering (miscellaneous),Mechanical Engineering,Civil and Structural Engineering,Chemical Engineering (miscellaneous),Environmental Science (miscellaneous),Materials Science (miscellaneous),Earth-Surface Processes

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of Impact Properties under Instrumented Charpy Test;Journal of Engineering and Technological Sciences;2024-06-19

2. Crash energy management optimization of high-speed trains by machine learning methods;International Journal of Mechanical Sciences;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3