Application of High-Performance Computing to Solve the Cauchy problem with the Fractional Riccati Equation Using an Nonlocal Implicit Finite-Difference Scheme

Author:

Твёрдый Д.А.ORCID,Паровик Р.И.ORCID

Abstract

В статье представлено исследование вычислительной эффективности параллельной версии численного алгоритма для решения уравнения Риккати с производной дробного перменного порядка типа Герасимова-Капуто. Численный алгоритм представляет собой нелокальную неявную конечно-разностную схему, которая сводится к системе нелинейных алгебраических уравнений и решается с помощью модифицированного метода Ньютона. Нелокальность численной схемы создает высокую вычислительную нагрузку на вычислительные ресурсы, из-за чего возникает необходимость в реализации эффективных параллельных алгоритмов их решения. Исследуемый на эффективность численный алгоритм реализован на языке C из-за его универсальности при работе с памятью. Распаралеливание проводилось с помощью технологии OpenMP. Проводится серия вычислительных экспериментов на вычислительном сервере NVIDIA DGX STATION (Институт математики имени В.И. Романовского, г. Ташкент, Узбекистан) и ноутбуке HP Pavilion Gaming Laptop Z270X, где решалась задача Коши для дробного уравнения Риккати с непостоянными коэффициентами. На основе среднего времени вычисления вычисляются: ускорение, эффективность и стоимость алгоритма. Из анализа данных видно, что OpenMP параллельная программная реализация нелокальной неявной конечно-разностной схемы показывает ускорение работы от 9-12 раз в зависимости от количества задействованных ядер CPU. The article presents a study of the computational efficiency of a parallel version of a numerical algorithm for solving the Riccati equation with a fractional variable order derivative of the Gerasimov-Caputo type. The numerical algorithm is a nonlocal implicit finite-difference scheme, which reduces to a system of nonlinear algebraic equations and is solved using a modified Newton method. The nonlocality of the numerical scheme creates a high computational load on computing resources, which creates the need to implement efficient parallel algorithms for solving them. The numerical algorithm studied for efficiency is implemented in the C language due to its versatility when working with memory. Parallelization was carried out using OpenMP technology. A series of computational experiments are being carried out on the NVIDIA DGX STATION computing server (Institute of Mathematics named after V.I. Romanovsky, Tashkent, Uzbekistan) and the HP Pavilion Gaming Laptop Z270X, where the Cauchy problem for the fractional Riccati equation with non-constant coefficients was solved. Based on the average computation time, the speedup, efficiency and cost of the algorithm are calculated. From the data analysis it is clear that the OpenMP parallel software implementation of the non-local implicit finite-difference scheme shows an acceleration of 9-12 times, depending on the number of CPU cores involved.

Publisher

Institute of Cosmophysical Research and Radio Wave Propagation Far Eastern Branch of the Russian Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3