Effect of mechanical activation of tungsten powder on the structure and properties of the sintered Sn-Cu-Co-W material

Author:

Ozolin AlexanderORCID, ,Sokolov EvgenyORCID,

Abstract

Introduction. One of the methods for improving the properties of sintered materials is mechanical activation of powders. It ensures milling the powders, changing its energy state, intensifying the sintering of powder materials, and forming a fine-grained structure in it. When tungsten powders are mechanically activated in planetary centrifugal mills, nanoparticles can be formed, which have a high reactive power. The objective of the paper is to study the effect of mechanical activation of tungsten particles on the structure and properties of the sintered Sn-Cu-Co-W powder material. Research technique: Mechanical activation of W16,5 grade tungsten powder is carried out in a planetary centrifugal ball mill AGO-2U for 5…120 minutes with carrier speeds of 400…1,000 rpm. The mixture of tungsten, tin, copper, and cobalt powders are compacted by static pressing in molds and then sintered in vacuum at 820 °C. The morphology and size of powder particles, as well as the structure of the sintered samples, are studied by scanning electronic microscopy, X-ray microanalysis, and optical metallography. Porosity of the sintered samples is identified by the gravimetric method. Microhardness of the structural constituents and macrohardness of the sintered materials are measured, too. Results: in the modes under study, mechanical activation is accompanied by the formation of tungsten nanoparticles with the minimum size of 25 nm. Alongside this, the powder is exposed to cold working, which hinders further milling. Tungsten nanoparticles, characterized by high surface energy, have a significant effect on the dissolution-precipitation of cobalt during liquid-phase sintering of Sn-Cu-Co-W powder material. Addition of nanodispersed tungsten into the material slows down the growth of cobalt particles during sintering and contributes to the formation of a fine-grained structure. The sintered Sn-Cu-Co-W material, containing mechanically activated tungsten, features higher hardness of 105…107 HRB, which is explained by cold working of tungsten particles and dispersion hardening. The results can be applied for improving mechanical properties of Sn-Cu-Co-W alloys used as metallic binders in diamond abrasive tools.

Publisher

Novosibirsk State Technical University

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3