Evaluation of Permeability Models for Foundry Molds and Cores in Sand Casting Processes

Author:

Sundaram D.1ORCID,Matsushita T.1ORCID,Belov I.1,Diószegi A.1ORCID

Affiliation:

1. School of Engineering, Jönköping University, Sweden

Abstract

Predicting the permeability of different regions of foundry cores and molds with complex geometries will help control the regional outgassing, enabling better defect prediction in castings. In this work, foundry cores prepared with different bulk properties were characterized using X-ray microtomography, and the obtained images were analyzed to study all relevant grain and pore parameters, including but not limited to the specific surface area, specific internal volume, and tortuosity. The obtained microstructural parameters were incorporated into prevalent models used to predict the fluid flow through porous media, and their accuracy is compared with respect to experimentally measured permeability. The original Kozeny model was identified as the most suitable model to predict the permeability of sand molds. Although the model predicts permeability well, the input parameters are laborious to measure. Hence, a methodology for replacing the pore diameter and tortuosity with simple process parameters is proposed. This modified version of the original Kozeny model helps predict permeability of foundry molds and cores at different regions resulting in better defect prediction and eventual scrap reduction.

Publisher

Polish Academy of Sciences Chancellery

Reference1 articles.

1. [1] Jorstad, J., Krusiak, M.B., Serra, J.O., La Fay, V. (2018). Aggregates and binders for expendable molds. Casting. 528-548. https://doi.org/10.31399/asm.hb.v15.a0005242. [2] Campbell, J., Svidró, J.T. & Svidró, J. (2017). Molding and Casting Processes. In Doru M. Stefanescu (Eds.), Cast Iron Science and Technology (pp. 189-206). ASM International. https://doi.org/10.31399/asm.hb.v01a.a0006297. [3] Ramakrishnan, R., Griebel, B., Volk, W., Günther, D. & Günther, J. (2014). 3D printing of inorganic sand moulds for casting applications. Advanced Materials Research. 1018, 441-449. https://doi.org/10.4028/www.scientific.net/AMR.1018.441. [4] Dańko, R. & Jamrozowicz, Ł. (2017). Density distribution and resin migration investigations in samples of sand core made by blowing method. Journal of Casting & Materials Engineering. 1(3), 70-73. https://doi.org/10.7494/ jcme.2017.1.3.70. [5] Lannutti, J.J., Mobley, C.E. (2003). Improvements in Sand Mold/Core Technology: Effects on Casting Finish. Final Technical Report, The Ohio State University, Columbus, OH. [6] Korotchenko, A.Y., Khilkov, D.E., Khilkova, A.A. & Tverskoy, M.V. (2020). Improving the quality of production of sand core on core shooting machines. Materials Science Forum. 989, 589-594. https://doi.org/10.4028/www.scientific.net/MSF.989.589. [7] Winartomo, B., Vroomen, U., Bührig-Polaczek, A. & Pelzer, M. (2005). Multiphase modelling of core shooting process. International Journal of Cast Meterials Research. 18(1), 13-20. https://doi.org/10.1179/136404605225022811. [8] Thorborg, J., Wendling, J., Klinkhammer, J., Heitzer, M. (2023). Modelling hot distortion of inorganic bonded sand cores and application on complex 3D printed automotive cores, IOP Conference Series: Materials Science and Engineering. 1281(1), 012069. https://doi.org/10.1088/1757-899x/1281/1/012069. [9] Muskat, M. (1937). The flow of fluids through porous media, Journal of Applied Physics. 8(4), 274-282. https://doi.org/10.1063/1.1710292. [10] Campbell, J. (2011). Molds and cores. Complete Casting Handbook. 1, 155-186. https://doi.org/10.1016/b978-1-85617-809-9.10004-0. [11] Marks, B., Sandnes, B., Dumazer, G., Eriksen, J.A. Måløy, K.J. (2015). Compaction of granular material inside confined geometries, Frontiers in Physics. 3, 1-9. https://doi.org/10.3389/fphy.2015.00041. [12] Bargaoui, B., Azzouz, F., Thibault, D. & Cailletaud, G. (2017). Thermomechanical behavior of resin bonded foundry sand cores during casting. Journal of Materials Processing Technology. 246, 30-41. https://doi.org/10.1016/j.jmatprotec. 2017.03.002. [13] Mitra, S., EL Mansori, M., Rodríguez de Castro, A. & Costin, M. (2020). Study of the evolution of transport properties induced by additive processing sand mold using X-ray computed tomography. Journal of Materials Processing Technology. 277 116495. https://doi.org/10.1016/ j.jmatprotec.2019.116495. [14] Ettemeyer, F., Lechner, P., Hofmann, T., Andrä, H., Schneider, M., Grund, D., Volk, W. & Günther, D. (2020). Digital sand core physics: Predicting physical properties of sand cores by simulations on digital microstructures. Internatiol Journal of Solids Structures. 188-189, 155-168. https://doi.org/10.1016/j.ijsolstr.2019.09.014. [15] Neithalath, N., Sumanasooriya, M.S. & Deo, O. (2010). Characterizing pore volume, sizes, and connectivity in pervious concretes for permeability prediction. Materials Characterization 61(8), 802-813. https://doi.org/10.1016/j.matchar.2010.05.004. [16] Das, S., Stone, D., Convey, D. & Neithalath, N. (2014). Pore- and micro-structural characterization of a novel structural binder based on iron carbonation, Materials Characterization. 98, 168-179. https://doi.org/10.1016/j.matchar.2014.10.025. [17] Landis, E.N. & Keane, D.T. (2010). X-ray microtomography. Materials Characterization. 61(12), 1305-1316. https://doi.org/10.1016/j.matchar.2010.09.012. [18] Scheidegger, A.E.. (1957). The physics of flow through porous media. University of Toronto press. [19] H. Darcy. (1856). Les fontaines publiques de la ville de Dijon: exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau. Paris. [20] da Silva, M.T.Q.S., do Rocio Cardoso, M., Veronese, C.M.P. & Mazer, W. (2022). Tortuosity: A brief review. Materials Today: Proceedings. 58(4), 1344-1349. https://doi.org/10.1016/j.matpr.2022.02.228. [21] Kadhim, F.S., Samsuri, A. & Kamal, A. (2013). A review in correlations between cementation factor and carbonate rocks properties. Life Science Journal. 10(4), 2451-2458. [22] Nield, D.A., Bejan, A. (2012). Convection in porous media: Springer Fourth edition. https://doi.org/10.1007/978-1-4614-5541-7. [23] Costa, A. (2006). Permeability-porosity relationship: A reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption. Geophysical Research Letters. 33(2), 1-5. https://doi.org/10.1029/2005GL025134. [24] Slichter, C.S. (1899). Theoretical investigation of the motion of ground waters. Geological Survey (U.S.). Ground Water Branch. [25] Leibenzon, L.S. (1947). Dvizhenie prirodnykh zhidkostei i gazov v poristoi srede. In The Motion of Natural Liquids and Gases in a Porous Medium. Gostekhizdat, Moscow. [26] Sundaram, D., Svidró, J.T., Svidró, J. & Diószegi, A. (2021). On the relation between the gas-permeability and the pore characteristics of furan sand. Materials. 14(14), 3803, 1-14. https://doi.org/10.3390/ma14143803. [27] Sundaram, D., Svidró, J.T., Svidró, J. & Diószegi, A. (2022). A novel approach to quantifying the effect of the density of sand cores on their gas permeability. Joranl of Casting & Materials Engineering. 6(2), 33-38. https://doi.org/10.7494/jcme.2022.6.2.33. [28] Costanza-Robinson, M.S. Estabrook, B.D. & Fouhey, D.F. (2011). Representative elementary volume estimation for porosity, moisture saturation, and air-water interfacial areas in unsaturated porous media: Data quality implications. Water Resources Reserch. 47(7), 1-12. https://doi.org/10.1029/2010WR009655. [29] Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P. & Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods. 9, 676-682. https://doi.org/10.1038/nmeth.2019. [30] Grace, J.R., Ebneyamini, A. (2021). Connecting particle sphericity and circularity. Particuology. 54, 1-4. https://doi.org/10.1016/j.partic.2020.09.006. [31] Vincent, L., Soille, P. (1991). Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis & Machine Intelligence. 13(06), 583-598. https://doi.org/10.1109/34.87344. [32] Domander, R. Felder, A.A., Doube, M., Schmidt, D. (2021). BoneJ2 - refactoring established research software. Wellcome Open Research. 6, 1–21. [33] Dougherty, R., Kunzelmann, K.-H. (2007). Computing Local Thickness of 3D Structures with ImageJ. Microscopy Microanalysis. 13(S02), 1678-1679. https://doi.org/10.1017/ s1431927607074430. [34] Schmid, B., Schindelin, J., Cardona, A., Longair, M. & Heisenberg, M. (2010). Open Access SOFTWARE A high-level 3D visualization API for Java and ImageJ. BMC Bioinformatics. 11, 274, 1-7. http://www.biomedcentral.com /1471-2105/11/274. [35] Nimmo, J.R. (2004). Porosity and Pore Size Distribution. In Hillel, D.(Eds.), Encyclopedia of Soils in the Environment. London, Elsevier,. [36] Glover, P.W.J., Walker, E. (2009). Grain-size to effective pore-size transformation derived from electrokinetic theory. Geophysics. 74(1), E17-E29. https://doi.org/10.1190/ 1.3033217. [37] Graton, L.C. & Fraser, H.J. (1935). Systematic Packing of spheres: with particular relation to porosity and permeability. The Journal of Geology. 43(8), 1, 785-909. http://www.jstor.org/stable/30058420. [38] Holzer, L., Marmet, P., Fingerle, M., Wiegmann, A., Neumann, M., Schmidt, V. (2023). Tortuosity and microstructure effects in porous media. Springer Cham. https://doi.org/10.1007/978-3-031-30477-4.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3