Effect of Annealing Temperature on Thermal Behaviour and Crystallinity of Zinc Oxide Supported Magnesium Aluminate (ZnO/MgAl2O4) Via Green Synthesis One Pot Fusion

Author:

Sukiman N.S.1ORCID,Zavawi M.F.1ORCID,Rahmat N.1ORCID,Abdullah M.M. Al-Bakri2ORCID

Affiliation:

1. Universiti Teknologi MARA, School of Chemical Engineering, College of Engineering, 40450 Shah Alam, Selangor, Malaysia

2. Universiti Malaysia Perlis, Centre of Excellence Geopolymer & Green Technology, 01000 Kangar, Perlis, Malaysia

Abstract

Zinc oxide-supported magnesium aluminate (ZnO/MgAl2O4) was synthesized by the one-pot fusion method, consuming magnesium nitrate, aluminum nitrate, and citric acid as starting precursors. The samples prepared were annealed at temperatures ranging from 700 to 900°C to study the influence of annealing temperature on thermal behaviour and crystalline properties. The thermal behaviour of ZnO/MgAl2O4 was characterized by thermogravimetric analysis (TGA), while the structural properties and crystalline phase of ZnO/MgAl2O4 were analysed by X-ray diffraction (XRD). The TGA results show that there were three stages of decomposition in the sample. The first stage indicates the removal of water content from the sample; the second stage indicates the decomposition of citric acid; and the third stage represents the crystallization phase formation at a temperature range of 800- 950°C. The percentage of citric acid decomposition increases with increasing annealing temperatures up to 800°C. However, the decomposition rate gradually reduces at annealing temperatures between 850 and 900°C. XRD analysis results suggest that microstructured ZnO/MgAl2O4 with high crystallinity can be obtained at the highest annealing temperature. It can be concluded that the result of thermal behaviour represented by the decomposition stage is corroborated with structural and crystalline properties at increasing annealing temperatures.

Publisher

Polish Academy of Sciences Chancellery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3