Effects of Main Alloying Elements on Interface Reaction between Tool Steel and Molten Aluminum

Author:

Yoon Young-Ok1ORCID,Kim Nam-Seok1ORCID,Ha Seong-Ho1ORCID,Kim Bong-Hwan1ORCID,Lim Hyun-Kyu1ORCID,Kim Shae K.1ORCID

Affiliation:

1. Korea Institute of Industrial Technology (KITECH), Incheon 21999, Republic of Korea

Abstract

Effects of Si and Mg as main elements on interface reaction between tool steel and molten Al alloy at 700°C were investigated. Pure aluminum and Al-10mass%Mg alloy showed relatively simple interfacial layers, whereas thicker, multi-layered reaction bonds were found in the diffusion couple of A380 alloy. The diffusion of a large amount of Fe into Al matrix throughout the interfacial layer led to the formation of Al-Fe based intermetallic particles in the Al base metals. The diffusion couple of Al-10mass%Mg alloy showed a similar intermetallic layer as that of pure Al, indicating that 10mass%Mg in the Al melt rarely affected the formation of Al-Fe intermetallic layers. However, A380 alloy showed much expanded soldering area and increased thickness of intermetallic layers. Based on the phase diagram calculated, the solubility of Fe in liquid Al increased significantly with increasing Si content up to apploximately 5mass%, while, in the case of 10mass%Mg addition, the Fe solubility gradually decreased with increasing Mg content. Al-10mass%Mg alloy also showed the same tendency as that of pure Al in the formation and distribution of intermetallic compounds. However, in the Al-12mass%Si alloy, two types of Al-Fe-Si ternary compounds are present on the Al-rich side.

Publisher

Polish Academy of Sciences Chancellery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3