Sinteza fenolne smole ojačane nanočesticama TiO2 i njezin utjecaj na gorivost lamelirane drvne građe (LVL)

Author:

Özbay Günay1,Atar Musa2,Ozcifci Ayhan1

Affiliation:

1. Aksaray University, Faculty of Engineering, Department of Industrial Engineering, Aksaray, Turkey

2. Gazi University, Faculty of Technology, Department of Forest Industrial Engineering, Ankara, Turkey

Abstract

In this study, phenol-formaldehyde (PF) resin has been modified with titanium dioxide nanoparticles (nano-TiO2) at a varying ratio from 0.05 wt.% to 1.5 wt.% to enhance the thermal properties and combustion performance of the resins. The effect of the nano-TiO2 modification on the properties (chemical or thermal) of the resins was determined by Fourier to transform infrared (FT-IR) and thermal analysis (TGA) techniques. In addition, the combustion performance of laminated veneer lumber (LVL) samples bonded with the PF resin modified with nano-TiO2 was tested. The result of the FT-IR analysis indicated that the modified PF resins had match peaks to the reference PF resin. These similarities of the peaks supported that the modified PF resins were successfully synthesise with phenol, formaldehyde, and nano-TiO2. The PF resins modified by nano-TiO2 demonstrated better thermal stability than the reference resin. The nano-TiO2 modified PF resin exhibited a favourable influence on the combustion characteristics of LVL. In consequence, PF resin modified with nano-TiO2 could be used as a combustion retardant adhesive in the wood industry.

Publisher

Faculty of Forestry, University of Zagreb

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3