Application of Multiple Omics to Understand Postoperative Delirium Pathophysiology in Humans

Author:

Vasunilashorn Sarinnapha M.,Dillon Simon T.,Marcantonio Edward R.,Libermann Towia A.

Abstract

Delirium, an acute change in cognition, is common, morbid, and costly, particularly among hospitalized older adults. Despite growing knowledge of its epidemiology, far less is known about delirium pathophysiology. Initial work understanding delirium pathogenesis has focused on assaying single or a limited subset of molecules or genetic loci. Recent technological advances at the forefront of biomarker and drug target discovery have facilitated application of multiple “omics” approaches aimed to provide a more complete understanding of complex disease processes such as delirium. At its basic level, “omics” involves comparison of genes (genomics, epigenomics), transcripts (transcriptomics), proteins (proteomics), metabolites (metabolomics), or lipids (lipidomics) in biological fluids or tissues obtained from patients who have a certain condition (i.e., delirium) and those who do not. Multi-omics analyses of these various types of molecules combined with machine learning and systems biology enable the discovery of biomarkers, biological pathways, and predictors of delirium, thus elucidating its pathophysiology. This review provides an overview of the most recent omics techniques, their current impact on identifying delirium biomarkers, and future potential in enhancing our understanding of delirium pathogenesis. We summarize challenges in identification of specific biomarkers of delirium and, more importantly, in discovering the mechanisms underlying delirium pathophysiology. Based on mounting evidence, we highlight a heightened inflammatory response as one common pathway in delirium risk and progression, and we suggest other promising biological mechanisms that have recently emerged. Advanced multiple omics approaches coupled with bioinformatics methodologies have great promise to yield important discoveries that will advance delirium research.

Publisher

S. Karger AG

Subject

Geriatrics and Gerontology,Aging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3