TRPV1 is a Responding Channel for Acupuncture Manipulation in Mice Peripheral and Central Nerve System

Author:

Chen Hsiao-Chun,Chen Ming-Yen,Hsieh Ching-Liang,Wu Shu-Yih,Hsu Hsin-Cheng,Lin Yi-Wen

Abstract

Background/Aims: Acupuncture involves inserting a fine needle into a specific point, often called an acupoint, thereby initiating a therapeutic effect accompanied by phenomena such as soreness, heaviness, fullness, and numbness. Acupoints are characterized as points located in deep tissues with abundant sensory nerve terminals, which suggests that there is a strong relationship between acupoints and peripheral sensory afferents. In this study, we determined whether manual acupuncture (MA) or different frequencies of electroacupuncture (EA) share similar mechanisms for activating excitatory neurotransmission. Methods: We performed MA or EA at acupoint ST36 and we also used western blot and immunostaining techniques to determine neural changes at the peripheral dorsal root ganglion (DRG), spinal cord (SC), and somatosensory cortex (SSC) levels. Results: Our results show that either MA or EA at the ST36 acupoint significantly increased components of the TRPV1-related signaling pathway, such as pPKA, pPI3K, pPKC-pERK, and pAKT (but not pp38 or pJNK) at the peripheral DRG and central SC-SSC levels. Furthermore, excitatory phosphorylated N-methyl-D-aspartate receptor (pNMDA) and pCaMKIIα (but not pNR2B, pCaMKIIδ, or pCaMKIIγ) also increased. These molecules could not increase in the DRG and SC-SSC of TRPV1–/–mice. Conclusion: Our data demonstrates that both MA and EA can activate excitatory signals in either peripheral or central levels. We also define that TRPV1 is crucial for an acupuncture effect and then initiate excitatory pNR1-pCaMKII pathway, at peripheral DRG and central SC-SSC level. We suggest that the TRPV1 signaling pathway is highly correlated to Acupuncture effect that implies the real clinical significance.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3