Administration of Thyrotropin-Releasing Hormone in the Hypothalamic Paraventricular Nucleus of Male Rats Mimics the Metabolic Cold Defense Response

Author:

Zhang Zhi,Machado Frederico,Zhao Li,Heinen Charlotte A.,Foppen Ewout,Ackermans Mariette T.,Zhou Jiangning,Bisschop Peter H.,Boelen Anita,Fliers Eric,Kalsbeek Andries

Abstract

Background: Cold exposure increases thyrotropin-releasing hormone (TRH) expression primarily in the hypothalamic paraventricular nucleus (PVN). The PVN is a well-known hypothalamic hub in the control of energy metabolism. TRH terminals and receptors are found on PVN neurons. We hypothesized that TRH release in the PVN plays an important role in the control of thermogenesis and energy mobilization during cold exposure. Methods: Male Wistar rats were exposed to a cold environment (4°C) or TRH retrodialysis in the PVN for 2 h. We compared the effects of cold exposure and TRH administration in the PVN on plasma glucose, corticosterone, and thyroid hormone concentrations, body temperature, locomotor activity, as well as metabolic gene expression in the liver and brown adipose tissue. Results: Cold exposure increased body temperature, locomotor activity, and plasma corticosterone concentrations, but blood glucose concentrations were similar to that of room temperature control animals. TRH administration in the PVN also promptly increased body temperature, locomotor activity and plasma corticosterone concentrations. However, TRH administration in the PVN markedly increased blood glucose concentrations and endogenous glucose production (EGP) compared to saline controls. Selective hepatic sympathetic or parasympathetic denervation reduced the TRH-induced increase in glucose concentrations and EGP. Gene expression data indicated increased gluconeogenesis in liver and lipolysis in brown adipose tissue, both after cold exposure and TRH administration. Conclusions: We conclude that TRH administration in the rat PVN largely mimics the metabolic and behavioral changes induced by cold exposure indicating a potential link between TRH release in the PVN and cold defense.

Publisher

S. Karger AG

Subject

Cellular and Molecular Neuroscience,Endocrine and Autonomic Systems,Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3