DMBT1 Alleviates Nasal Airway Inflammatory Response in the LPS-Induced Nasal Polyp Model

Author:

Lu Xiaoqing,Xu He,Shan Liang,Gao Jinfeng,Tong Jun

Abstract

Introduction: The aim of this study was to investigate the effects and mechanism of deleted in malignant brain tumors 1 (DMBT1) protein on the mouse model of nasal polyps. Methods: The mouse model of nasal polyps was induced by intranasal drip intervention of lipopolysaccharide (LPS) 3 times a week for 12 weeks. A total of 42 mice were randomly divided into blank group, LPS group, and LPS+DMBT1 group. DMBT1 protein was applied by intranasal drip intervention in each nostril after LPS. After 12 weeks, 5 mice in each group were randomly picked for the mouse olfactory disorder experiment, 3 mice were randomly picked for histopathological observation of nasal mucosa, 3 mice for olfactory marker protein (OMP) immunofluorescence analysis and the last 3 mice were grabbed for nasal lavage, and the levels of cytokines interleukin (IL)-4, IL-5, IL-13, and phosphatidylinositide 3-kinases (PI3K) in the nasal lavage fluid were detected by enzyme-linked immunosorbent assay (ELISA). Results: Compared with the blank group, mice in LPS group had olfactory dysfunction, the level of OMP was significantly reduced, the nasal mucosa was swollen, discontinuous, and contained a large number of inflammatory cells. The levels of IL-4, IL-5, IL-13, and PI3K in the nasal lavage fluid were significantly increased in LPS group (p < 0.01). Compared with the LPS group, the number of mice with olfactory dysfunction in the LPS+DMBT1 group was less, the infiltration of inflammatory cells was reduced, the OMP-positive cells were significantly increased, and the IL-4, IL-5, IL-13, and PI3K in the nasal lavage fluid were significantly increased, p < 0.01. Conclusions: DMBT1 protein alleviates the nasal airway inflammatory response in the mouse nasal polyp model, and the mechanism may be through the PI3K-AKT signaling pathway.

Publisher

S. Karger AG

Subject

Immunology,General Medicine,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3