Autophagy Protects Renal Tubular Cells Against Ischemia / Reperfusion Injury in a Time-Dependent Manner

Author:

Guan Xuejing,Qian Yingying,Shen Yue,Zhang Lulu,Du Yi,Dai Huili,Qian Jiaqi,Yan Yucheng

Abstract

Background/Aims: Autophagy is a dynamic catabolic process that maintains cellular homeostasis. Whether it plays a role in promoting cell survival or cell death in the process of renal ischemia/reperfusion (I/R) remains controversial, partly because renal autophagy is usually examined at a certain time point. Therefore, monitoring of the whole time course of autophagy and apoptosis may help better understand the role of autophagy in renal I/R. Methods: Autophagy and apoptosis were detected after mice were subjected to bilateral renal ischemia followed by 0-h to 7-day reperfusion, exposure of TCMK-1 cells to 24-h hypoxia, and 2 to 24-h reoxygenation. The effect of autophagy on apoptosis was assessed in the presence of autophagy inhibitor 3-methyladenine (3-MA) and autophagy activator rapamycin. Results: Earlier than apoptosis, autophagy increased from 2-h reperfusion, reached the maximum at day 2, and then began declining from day 3 when renal damage had nearly recovered to normal. Exposure to 24-h hypoxia induced autophagy markedly, but it decreased drastically after 4 and 8-h reoxygenation, which was accompanied with increased cell apoptosis. Inhibition of autophagy with 3-MA increased the apoptosis of renal tubular cells during I/R in vivo and hypoxia/reoxygenation (H/R) in vitro. In contrast, activation of autophagy by rapamycin significantly alleviated renal tissue damage and tubular cell apoptosis in the two models. Conclusion: Autophagy was induced in a time-dependent manner and occurred earlier than the onset of cell apoptosis as an early response that played a renoprotective role during renal I/R and cell H/R. Up-regulation of autophagy may prove to be a potential strategy for the treatment of acute kidney injury.

Publisher

S. Karger AG

Subject

Physiology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3