Advanced Glycation End Products Induced Mitochondrial Dysfunction of Chondrocytes through Repression of AMPKα-SIRT1-PGC-1α Pathway

Author:

Yang QingshanORCID,Shi Yucong,Jin Tao,Duan Bowen,Wu Shujin

Abstract

<b><i>Introduction:</i></b> Our previous studies have demonstrated advanced glycation end products (AGEs) was an important mediator in osteoarthritis (OA) which may induce mitochondrial dysfunction. AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1), and its downstream target peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) are the critical sensors that regulate mitochondrial biogenesis and have been recognized as therapeutic targets in OA. This study was designed to test whether AGEs caused mitochondrial dysfunction through modulation of AMPKα/SIRT1/PGC-1α. <b><i>Methods:</i></b> We knocked down or overexpressed AMPKα, SIRT1, and PGC-1α by small interfering RNA or plasmid DNA transfection, respectively. Mitochondrial membrane potential (△Ψ) was detected by tetraethylbenzimidazolyl carbocyanine iodide (JC-1) fluorescence probe. <b><i>Results:</i></b> The results showed that AGEs impaired △Ψ, intracellular ATP level, and mitochondrial DNA content, linked to decreased AMPKα, SIRT1, and PGC-1α expression in chondrocyte. AMPKα pharmacologic activation or overexpression of AMPKα, SIRT1, and PGC-1α reversed impairments of mitochondrial biogenesis, oxidative stress, and inflammation in AGEs-induced chondrocytes. However, AMPKα activation using AICAR had decreased capacity to increase each of those same effect readouts in AGEs-treated SIRT1-siRNA or PGC-1α-siRNA chondrocyte. <b><i>Conclusion:</i></b> Taken together, AGEs reduced the AMPKα/SIRT1/PGC-1α signaling in chondrocytes, leading to mitochondrial dysfunction as a result of increased oxidative stress, inflammation, and apoptosis. These results indicated that target AMPK may be as a novel therapeutic strategy for AGEs-related OA prevention.

Publisher

S. Karger AG

Subject

Pharmacology,General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3