Interleukin-33 Ameliorates Murine Systemic Lupus Erythematosus and Is Associated with Induction of M2 Macrophage Polarisation and Regulatory T Cells

Author:

Mok Mo Yin,Law Ka Sin,Kong Wing Yin,Luo Cai Yun,Asfaw Endale T.,Chan Kwok Wah,Huang Fang Ping,Lau Chak SingORCID,Chan Godfrey Chi FungORCID

Abstract

The innate cytokine IL-33 is increasingly recognised to possess biological effects on various immune cells. We have previously demonstrated elevated serum level of soluble ST2 in patients with active systemic lupus erythematosus suggesting involvement of IL-33 and its receptor in the lupus pathogenesis. This study sought to examine the effect of exogenous IL-33 on disease activity of pre-disease lupus-prone mice and the underlying cellular mechanisms. Recombinant IL-33 was administered to MRL/lpr mice for 6 weeks, whereas control group received phosphate-buffered saline. IL-33-treated mice displayed less proteinuria, renal histological inflammatory changes, and had lower serum levels of pro-inflammatory cytokines including IL-6 and TNF-α. Renal tissue and splenic CD11b+ extracts showed features of M2 polarisation with elevated mRNA expression of Arg1, FIZZI, and reduced iNOS. These mice also had increased IL-13, ST2, Gata3, and Foxp3 mRNA expression in renal and splenic tissues. Kidneys of these mice displayed less CD11b+ infiltration, had downregulated MCP-1, and increased infiltration of Foxp3-expressing cells. Splenic CD4+ T cells showed increased ST2-expressing CD4+Foxp3+ population and reduced IFN-γ+ population. There were no differences in serum anti-dsDNA antibodies and renal C3 and IgG2a deposit in these mice. Exogenous IL-33 was found to ameliorate disease activity in lupus-prone mice with induction of M2 polarisation, Th2 response, and expansion of regulatory T cells. IL-33 likely orchestrated autoregulation of these cells through upregulation of ST2 expression.

Publisher

S. Karger AG

Subject

Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3