The Mechanistic Effects and Clinical Applications of Various Derived Mesenchymal Stem Cells in Immune Thrombocytopenia

Author:

He Yue,Ji Dexiang,Lu Wei,Chen Guoan

Abstract

Immune thrombocytopenia (ITP) is an acquired autoimmune disorder characterized by persistent thrombocytopenia resulting from increased platelet destruction and a loss of autoimmune tolerance. The pathogenesis of ITP is highly complex. Although ITP may be effectively controlled with currently available medications in some patients, a subset of cases remain refractory. The application of mesenchymal stem cells (MSCs) for human hematopoietic stem cell transplantation has increasingly demonstrated that MSCs modulate innate or adaptive immunity, thus resulting in a tolerant microenvironment. Functional defects and immunomodulatory disorders have been observed after the use of bone marrow mesenchymal stem cells (BM-MSCs) from patients with ITP. Here, we summarize the underlying mechanisms and clinical applications of various derived MSCs for ITP treatment, focusing on the main mechanisms underlying the functional defects and immune dysfunction of BM-MSCs from patients with ITP. Functional effects associated with the activation of the p53 pathway include decreased activity of the phosphatidylinositol 3 kinase/Akt pathway and activation of the TNFAIP3/NF-κB/SMAD7 pathway. Immune dysfunction appears to be associated with an impaired ability of BM-MSCs to induce various types of immune cells in ITP. At present, research focusing on MSCs in ITP remains in preliminary stages. The application of autologous or exogenous MSCs in the clinical treatment of ITP has been attempted in only a small case study and must be validated in larger-scale clinical trials.

Publisher

S. Karger AG

Subject

Hematology,General Medicine

Reference58 articles.

1. Purnamawati K, Ong JA, Deshpande S, Tan WK, Masurkar N, Low JK, et al. The importance of sex stratification in autoimmune disease biomarker research: a systematic review. Front Immunol. 2018;9:1208.

2. Nomura S, Matsuzaki T, Ozaki Y, Yamaoka M, Yoshimura C, Katsura K, et al. Clinical significance of HLA-DRB1*0410 in Japanese patients with idiopathic thrombocytopenic purpura. Blood. 1998;91(10):3616–22.

3. Amorim DM, Silveira VS, Scrideli CA, Queiroz RG, Tone LG. Fcγ receptor gene polymorphisms in childhood immune thrombocytopenic purpura. J Pediatr Hematol Oncol. 2012;34(5):349–52.

4. Zhang D, Zhang X, Ge M, Xuan M, Li H, Yang Y, et al. The polymorphisms of T cell-specific TBX21 gene may contribute to the susceptibility of chronic immune thrombocytopenia in Chinese population. Hum Immunol. 2014;75(2):129–33.

5. Ku FC, Tsai CR, Der Wang J, Wang CH, Chang TK, Hwang WL. Stromal-derived factor-1 gene variations in pediatric patients with primary immune thrombocytopenia. Eur J Haematol. 2013;90(1):25–30.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3