The Protective Effect of Ligustilide in Osteoarthritis: An in Vitro and in Vivo Study

Author:

Li Xiaobin,Wu Dengying,Hu Zhichao,Xuan Jiangwei,Ding Xiaoxia,Zheng Gang,Feng Zhenhua,Ni Wenfei,Wu Aimin

Abstract

Background/Aims: Osteoarthritis is a degenerative joint disease characterized by cartilage degeneration and a chondrocyte inflammatory response that induces an inflammatory environment closely linked to extracellular matrix (ECM) degradation. Ligustilide (LIG) is a major component of the herb Radix Angelicae Sinensis, with demonstrated anti-inflammatory effects. To confirm whether LIG has an equally inhibitory effect on inflammation in human osteoarthritis chondrocytes, we performed in vivo and in vitro experiments to validate the above conjectures and determine the relevant mechanisms. Methods: Quantitative realtime PCR and western blotting were performed to evaluate the expression of MMP-3, MMP-13, ADAMTS-5, iNOS, and COX-2 at both gene and protein levels. An enzyme-linked immunosorbent assay was used to evaluate the levels of other inflammatory factors (PGE2, TNF-α, and IL-6). The PI3K/AKT and nuclear factor kappa B (NF-κB) signaling pathways were also analyzed by western blotting, whereas immunofluorescence was used to assess the expression of collagen II and aggrecan. The in vitro effect of LIG was evaluated by intraperitoneal injection into a mouse osteoarthritis model induced by destabilization of the medial meniscus. Results: LIG lowered the phosphorylation levels of p65, IκBα, and IKKα/β and suppressed the IL-1β-induced expression of MMP-3, ADAMTS-5, iNOS, and COX-2 and the inflammatory factors PGE2, TNF-α, and IL-6. LIG markedly decreased IL-1β-induced degradation of collagen II and aggrecan. In vivo results showed that LIG-treated mouse cartilage showed less damage than the control group; the Osteoarthritis Research Society International (OARSI) score was also lower. LIG further reduced the thickness of the subchondral bone plate and alleviated the synovitis. Conclusion: LIG may act as a promising therapeutic agent for osteoarthritis by attenuating IL-1β-induced inflammation in chondrocytes and ECM degradation via suppression of NF-κB activation by the PI3K/AKT pathway.

Publisher

S. Karger AG

Subject

Physiology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3