Hypoxia and Dysregulated Angiogenesis in Kidney Disease

Author:

Tanaka Shinji,Tanaka Tetsuhiro,Nangaku Masaomi

Abstract

Background: Accumulating evidence has demonstrated that renal hypoxia has a crucial role in the pathogenesis of acute kidney injury (AKI), chronic kidney disease (CKD), and AKI-to-CKD transition, ultimately culminating in end-stage kidney disease. Renal hypoxia in progressive CKD is intricately linked to persisting capillary loss, which is mainly due to dysregulated angiogenesis. Summary: In CKD, hypoxia-inducible factor (HIF) accumulates in the ischemic tubulointerstitium but fails to sufficiently stimulate angiogenic responses, partly because of blunted activation of HIF, which is best exemplified in diabetic kidney disease. In addition, vascular endothelial growth factor (VEGF) expression is downregulated, possibly because injured tubules are not able to express sufficient VEGF and inflammatory circumstances inhibit VEGF expression. The upregulation of antiangiogenic factors and the incompetence of endothelial progenitor cells (EPCs) may also play some roles in the inadequacy of capillary restoration. Administration of VEGF or angiopoietin-1 maintains peritubular capillaries in several kidney diseases; however, administration of a single angiogenic factor may lead to the formation of abnormal vessels and induce inflammation, resulting in worsening of hypoxia and tubulointerstitial fibrosis. HIF stabilization, which aims to achieve the formation of mature and stable vessels by inducing coordinated angiogenesis, is a promising strategy. Given that the effect of systemic HIF activation is highly context-dependent, further studies are needed to elucidate the precise roles of HIF in various kidney diseases. The adoptive transfer of EPCs or mesenchymal stem cells (MSCs) is a fascinating alternative strategy to restore the peritubular capillaries. Key Messages: Suppressed HIF activation and VEGF expression may be responsible for the dysregulated angiogenesis in progressive CKD. Administration of a single angiogenic factor can cause abnormal vessel formation and inflammation, leading to a detrimental result. Although further studies are warranted, HIF stabilization and adoptive transfer of EPCs or MSCs appear to be promising strategies to restore normal capillaries.

Publisher

S. Karger AG

Subject

Materials Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3