Regulation of Insulin Resistance by Multiple MiRNAs via Targeting the GLUT4 Signalling Pathway

Author:

Zhou Tong,Meng Xianhong,Che Hui,Shen Nannan,Xiao Dan,Song Xiaotong,Liang Meihua,Fu Xuelian,Ju Jiaming,Li Yang,Xu Chaoqian,Zhang Yong,Wang Lihong

Abstract

Background/Aims: Type 2 Diabetes Mellitus (T2DM) is characterized by insulin resistance (IR), but the underlying molecular mechanisms are incompletely understood. MicroRNAs (miRNAs) have been demonstrated to participate in the signalling pathways relevant to glucose metabolism in IR. The purpose of this study was to test whether the multiple-target anti-miRNA antisense oligonucleotides (MTg-AMO) technology, an innovative miRNA knockdown strategy, can be used to interfere with multiple miRNAs that play critical roles in regulating IR. Methods: An MTg-AMO carrying the antisense sequences targeting miR-106b, miR-27a and miR-30d was constructed (MTg-AMO106b/27a/30d). Protein levels were determined by Western blot analysis, and transcript levels were detected by real-time RT-PCR (qRT-PCR). Insulin resistance was analysed with glucose consumption and glucose uptake assays. Results: We found that the protein level of glucose transporter 4 (GLUT4), Mitogen-activated protein kinase 14 (MAPK 14), Phosphatidylinositol 3-kinase regulatory subunit beta (PI3K regulatory subunit beta) and mRNA level of Slc2a4 (encode GLUT4), Mapk14 (encode MAPK 14) and Pik3r2 (encode PI3K regulatory subunit beta) were all significantly down-regulated in the skeletal muscle of diabetic rats and in insulin-resistant L6 cells. Overexpression of miR-106b, miR-27a and miR-30d in L6 cells decreased glucose consumption and glucose uptake, and reduced the expression of GLUT4, MAPK 14 and PI3K regulatory subunit beta. Conversely, silencing of endogenous miR-106b, miR-27a and miR-30d in insulin-resistant L6 cells enhanced glucose consumption and glucose uptake, and increased the expression of GLUT4, MAPK 14 and PI3K regulatory subunit beta. MTg-AMO106b/27a/30d up-regulated the protein levels of GLUT4, MAPK 14 and PI3K regulatory subunit beta, enhanced glucose consumption and glucose uptake. Conclusion: Our data suggested that miR-106b, miR-27a and miR-30d play crucial roles in the regulation of glucose metabolism by targeting the GLUT4 signalling pathway in L6 cells. Moreover, MTg-AMO106b/27a/30d offers more potent effects than regular singular AMOs.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3