Targeting the Non-Coding Genome for the Diagnosis of Disorders of Sex Development

Author:

Atlas GabbyORCID,Sreenivasan RajiniORCID,Sinclair Andrew

Abstract

Disorders of sex development (DSD) are a complex group of conditions with highly variable clinical phenotypes, most often caused by failure of gonadal development. DSD are estimated to occur in around 1.7% of all live births. Whilst the understanding of genes involved in gonad development has increased exponentially, approximately 50% of patients with a DSD remain without a genetic diagnosis, possibly implicating non-coding genomic regions instead. Here, we review how variants in the non-coding genome of DSD patients can be identified using techniques such as array comparative genomic hybridization (CGH) to detect copy number variants (CNVs), and more recently, whole genome sequencing (WGS). Once a CNV in a patient’s non-coding genome is identified, putative regulatory elements such as enhancers need to be determined within these vast genomic regions. We will review the available online tools and databases that can be used to refine regions with potential enhancer activity based on chromosomal accessibility, histone modifications, transcription factor binding site analysis, chromatin conformation, and disease association. We will also review the current in vitro and in vivo techniques available to demonstrate the functionality of the identified enhancers. The review concludes with a clinical update on the enhancers linked to DSD.

Publisher

S. Karger AG

Subject

Developmental Biology,Embryology,Endocrinology, Diabetes and Metabolism

Reference141 articles.

1. Abyzov A, Urban AE, Snyder M, Gerstein M. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011;21:974–84.

2. Ahmed SF, Achermann JC, Alderson J, Crouch NS, Elford S, Hughes IA, et al. Society for Endocrinology UK Guidance On The Initial Evaluation Of A Suspected Difference or Disorder Of Sex Development (DSD) (Revised 2021). Clin Endocrinol (Oxf). 2021. DOI: http://dx.doi.org/10.1111/cen.14528 [Epub ahead of print].

3. Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and genotyping. Nat Rev Genet. 2011;12:363–76.

4. Amarillo IE, Nievera I, Hagan A, Huchthagowder V, Heeley J, Hollander A, et al. Integrated small copy number variations and epigenome maps of disorders of sex development. Hum Genome Var. 2016;3:16012.

5. Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, et al. An atlas of active enhancers across human cell types and tissues. Nature. 2014;507:455–61.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3