Matrine Protects Endothelial Progenitor Cells against Apoptosis and Promotes Their Migration, Invasion, and Tube Formation Abilities via Modulating miR-126b/FOXO4 Axis

Author:

Zhu Xiqi,Jiang Jian,Wang Jian,Zhou Zhiyin,Ge Xiaoming

Abstract

Introduction and Objective: Endothelial progenitor cells (EPCs) have been proven to exhibit a therapeutic effect in deep vein thrombosis, but are susceptible to microenvironment. Besides, Matrine has promotive effects on EPCs, but its effects on microRNA (miR)-126 remain obscure, which are therefore discussed in the study. Methods: The cultured EPCs were extracted from Sprague-Dawley rats and identified by immunofluorescence assay. After being treated with Matrine or transfected with miR-126b inhibitor and small interfering RNA targeting forkhead box (FOXO) 4, the viability and apoptosis of EPCs were determined by cell counting kit-8 assay and flow cytometry. The migration, invasion, and tube formation abilities were detected by scratch, Transwell, and tube formation assays. The target genes of miR-126b were predicted by TargetScan, and verified by dual-luciferase reporter assay. The expressions of miR-126b, FOXO4, matrix metalloproteinase (MMP) 2, MMP9, and vascular endothelial growth factor (VEGF) A were determined by quantitative real-time polymerase chain reaction and Western blot. Results: The EPCs were successfully extracted and cultured, as evidenced by positive reaction cluster of differentiation (CD) 34 and CD133. Matrine promoted the viability, migration, invasion, and tube formation while inhibiting the apoptosis of EPCs, and upregulated the expression of miR-126b. Besides, miR-126b inhibitor reversed the effects of Matrine on EPCs and downregulated the expression levels of MMP2, MMP9, and VEGFA. MiR-126b targeted the FOXO4, and siFOXO4 reversed the abovementioned effects of miR-126b inhibitor on EPCs. Conclusion: Matrine protects EPCs from apoptosis and promotes their migration, invasion, and tube formation abilities via regulating miR-126b/FOXO4 axis.

Publisher

S. Karger AG

Subject

Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3