Factors That Can Prolong Ocular Treatment Duration in Age-Related Macular Degeneration

Author:

Kaiser Peter K.,Giani Andrea,Fuchs Holger,Chong VictorORCID,Heier Jeffery S.ORCID

Abstract

Intravitreal injections of anti-vascular endothelial growth factor (VEGF) agents are used to treat wet age-related macular degeneration (wAMD); however, they are associated with a considerable treatment burden and poor real-world outcomes. The molecular size and charge of anti-VEGF agents influence drug pharmacokinetics in the vitreous and peak drug efficacy. This article reviews the established and novel strategies to prolong drug action, in the vitreal cavity, and thus reduce dosing frequency. Increased ocular residency can be attained by increasing drug size as with large molecules, such as KSI-301; adding polyethylene glycol to pegcetacoplan (APL-2) or avacincaptad pegol to increase molecular size; or binding to other targets that increase molecular size, such as vitreal albumin in the case of BI-X. Faricimab is a bispecific antibody in which the fragment crystallizable portion is engineered to prolong ocular residency and reduce systemic exposure. Conversely, small VEGF-binding molecules, such as brolucizumab, can be administered at higher clinical doses, with the potential for prolonged clinical activity versus larger molecules. Other important considerations include sustained drug delivery routes, such as the ranibizumab port delivery system or subconjunctival or suprachoroidal injection. More effective and longer-lasting treatments are needed for wAMD to prolong drug action and reduce dosing frequency. Several strategies are under investigation and the prevention of vision loss in patients with AMD or other retinal diseases may be attainable in the near future.

Publisher

S. Karger AG

Subject

Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3