Activation of Hepatic Stellate Cells is Inhibited by microRNA-378a-3p via Wnt10a

Author:

Yu Fujun,Fan XuFei,Chen Bicheng,Dong Peihong,Zheng Jianjian

Abstract

Background/Aims: Wnt/β-catenin pathway is involved in liver fibrosis and microRNAs (miRNAs) are considered as key regulators of the activation of hepatic stellate cells (HSCs). A recent study showed the protective role of miR-378a-3p against cardiac fibrosis. However, whether miR-378a-3p suppresses Wnt/β-catenin pathway in liver fibrosis is largely unknown. Methods: miR-378a-3p expression was detected in carbon tetrachloride-induced liver fibrosis and activated HSCs. Effects of miR-378a-3p overexpression on HSC activation and Wnt/β-catenin pathway were analyzed. Bioinformatic analysis was employed to identify the potential targets of miR-378a-3p. Serum miR-378a-3p expression was analyzed in patients with cirrhosis. Results: Reduced miR-378a-3p expression was observed in the fibrotic liver tissues and activated HSCs. Up-regulation of miR-378a-3p inhibited HSC activation including cell proliferation, α-smooth muscle actin (α-SMA) and collagen expression. Moreover, miR-378a-3p overexpression resulted in Wnt/β-catenin pathway inactivation. Luciferase reporter assays demonstrated that Wnt10a, a member of Wnt/β-catenin pathway, was confirmed to be a target of miR-378a-3p. By contrast, miR-378a-3p inhibitor contributed to HSC activation, with an increase in cell proliferation, α-SMA and collagen expression. But all these effects were blocked down by silencing of Wnt10a. Notably, sera from patients with cirrhosis contained lower levels of miR-378a-3p than sera from healthy controls. Receiver operating characteristic curve analysis suggested that serum miR-378a-3p differentiated liver cirrhosis patients from healthy controls, with an area under the curve of ROC curve of 0.916. Conclusion: miR-378a-3p suppresses HSC activation, at least in part, via targeting of Wnt10a, supporting its potential utility as a novel therapeutic target for liver fibrosis.

Publisher

S. Karger AG

Subject

Physiology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3