Disrupted Small-World Networks in Children with Drug-Naïve Attention-Deficit/Hyperactivity Disorder: A DTI-Based Network Analysis

Author:

Wu Liuhui,Su Shu,Dai Yan,Qiu Huaqiong,Lin Liping,Zou Mengsha,Qian Long,Liu Meina,Zhang Hongyu,Chen Yingqian,Yang Zhiyun

Abstract

Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders, while the potential neurological mechanisms are poorly understood. To explore the alterations in the white matter (WM) structural connectome in children with drug-naïve ADHD, forty-nine ADHD and 51 age- and gender-matched typically developing (TD) children aged 6–14 years were enrolled. WM structural connectivity based on deterministic diffusion tensor imaging (DTI) was constructed in 90 cortical and subcortical regions, and topological parameters of the resulting graphs were calculated. Network metrics were compared between two groups. The concentration index and the total cancellation test scores of digit cancellation test were used to evaluate clinical symptom severity in ADHD. Then, a partial correlation analysis was performed to explore the relationship between significant topologic metrics and clinical symptom severity. Compared to TD group, ADHD showed an increase in the characteristic path length (Lp), normalized clustering coefficient (γ), small worldness (σ), and a decrease in the global efficiency (Eglob) (all p < 0.05). Furthermore, ADHD showed reduced nodal centralities mainly in the regions of default mode network (DMN), central executive network (CEN), basal ganglia, and bilateral thalamus (all p < 0.05). After performing Benjamini-Hochberg’s procedure, only the left orbital part of superior frontal gyrus and the left caudate were statistically significant (p < 0.05, FDR-corrected). In addition, the concentration index of ADHD was negatively correlated with the nodal betweenness of the left orbital part of the middle frontal gyrus (r = −0.302, p = 0.042). Our findings revealed an ADHD-related shift of WM network topology toward “regularization” pattern, characterized by decreased global network integration, which is also reflected by changed nodal centralities involving DMN, CEN, basal ganglia, and bilateral thalamus. ADHD could be understood by examining the dysfunction of large-scale spatially distributed neural networks.

Publisher

S. Karger AG

Subject

Developmental Neuroscience,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3