Exhaled Methane Is Associated with a Lower Heart Rate

Author:

Takakura Will,Chang ChristineORCID,Pimentel Mark,Mo Gina,Torosyan John,Hosseini Ava,Wang Jiajing,Kowaleski Edward,Mathur Ruchi,Chang Bianca,Pichetshote Nipaporn,Rezaie AliORCID

Abstract

Background: In humans, methane (CH4) is exclusively produced by the intestinal microbiota and has been implicated in several conditions including cardiovascular disease. After microbial production of CH4 in the gut, it steadily crosses into the systemic circulation and reaches the lungs where it can be detected in the exhaled breath, as a surrogate measure for intestinal CH4 production. Recent reports have shown an association between CH4 and vagal dysfunction as well as the inhibition of CH4 activity on ileal contractions with atropine, suggesting its action on the parasympathetic nervous system. Given these findings, we hypothesized that CH4 may be affecting resting heart rate (HR) based on the potential effect of CH4 on the vagus nerve. Objectives: Given its possible role in the parasympathetic nervous system, we aimed to study the relationship between breath CH4 and resting HR in humans. Additionally, we performed a longitudinal study analyzing the change in HR and its association with breath CH4 over time. Methods: First, we reviewed 1,126 subjects and compared HR in subjects with detectable and undetectable breath CH4. Second, we performed a post hoc analysis of a randomized control trial to compare the change in HR for those who had an increase in breath CH4 versus those that had a decrease in breath CH4 over 14 weeks. Last, we assessed whether a larger decrease in CH4 is associated with a larger increase in HR over time. Results: In the retrospective cohort, subjects with detectable CH4 had a lower HR compared to those with undetectable CH4 (73.0 ± 0.83 vs. 76.0 ± 0.44 beats/min, p = 0.01). In the post hoc analysis, a decrease in CH4 over time was associated with an increase in HR (median ∆ = 6.5 ± 8.32 beats/min, p = 0.0006). Last, we demonstrated a biological gradient whereby a larger drop in CH4 was associated with a greater increase in HR (R = −0.31, p = 0.03). Conclusion: Our findings suggest a potential role for the microbiome (and specifically CH4 from methanogens) to regulate HR. Considering these findings, mechanistic studies are warranted to further investigate this potential novel microbiome-neurocardiac axis.

Publisher

S. Karger AG

Subject

Pharmacology (medical),Cardiology and Cardiovascular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Symptom Profile of Patients With Intestinal Methanogen Overgrowth: A Systematic Review and Meta-analysis;Clinical Gastroenterology and Hepatology;2024-08

2. Volatile Organic Gaseous Compound Biomarkers for Cardiovascular Diseases: A Review;2024 International Conference on Innovations and Challenges in Emerging Technologies (ICICET);2024-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3