Activation of Secretagogue Independent Gastric Acid Secretion via Endothelial Nitric Oxide Synthase Stimulation in Rats

Author:

Kitay Alice Miriam,Link Alexander,Geibel John P.

Abstract

Background/Aims: L-arginine is an important mediator of cell division, wound healing, and immune function. It can be transformed by the nitric oxide synthase (NOS) to nitric oxide (NO), an important cell signaling molecule. Recent studies from our laboratory demonstrate specific effects of L-arginine (10mM) exposure on gastric acid secretion in rat parietal cells. Methods: Studies were performed with isolated gastric glands and the pH sensitive dye BCECF-AM +/- L-arginine to examine its effects on acid secretion. The direct NO-donor diethylamine NONOate sodium salt hydrate, was also used while monitoring intracellular pH. The specific inhibitor of the intracellular NO signal cascade ODQ was also used. Results: We found that gastric proton extrusion was activated with application of L-arginine (10mM), in a separate series when L-arginine (10mM) + L-NAME (30µM) were added there was no acid secretion. Addition of the NO-donor diethylamine NONOate sodium salt hydrate (10µM) also induced acid secretion. When the selective sGC-inhibitor ODQ was added with NONOate we did not observe acid secretion. Conclusion: We conclude that L-arginine is a novel secretagogue, which can mediate gastric acid secretion. Furthermore, the intake of L-arginine causes direct activation of the H+, K+ ATPase and increased proton extrusion from parietal cells resulting in the increased risk for acid-related diseases. The NO/sGC/cGMP pathway has never been described as a possible intracellular mechanism for H+, K+ ATPase activation before and presents a completely new scientific finding. Moreover, our studies demonstrate a novel role for L-NAME to effectively eliminate NOS induced acid secretion and thereby reducing the risk for L-arginine inducible ulcer disease.

Publisher

S. Karger AG

Subject

Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3