Autophagy Facilitates Metadherin-Induced Chemotherapy Resistance Through the AMPK/ATG5 Pathway in Gastric Cancer

Author:

Pei Guoqing,Luo Meng,Ni Xiaochun,Wu Jugang,Wang Shoulian,Ma Yiwen,Yu Jiwei

Abstract

Background/Aims: Metadherin (MTDH) is overexpressed in some malignancies and enhances drug resistance; however, its role in gastric cancer (GC) and the underlying mechanisms remain largely unexplored. Here, we explore the mechanism by which MTDH induces drug resistance in GC. Methods: We analysed the level of MTDH in GC and adjacent normal gastric mucosal tissues by real-time quantitative PCR (q-PCR). We also analysed the level of autophagy by western blot analysis, confocal microscopy, and transmission electron microscopy after MTDH knockdown and overexpression, and examined fluorouracil (5-FU) resistance by Cell Counting Kit-8 at the same time. Finally, GC patient-derived xenograft tumours were used to demonstrate 5-FU resistance. An AMPK pathway inhibitor was applied to determine the molecular mechanisms of autophagy. Results: MTDH expression was significantly increased in the GC specimens compared with that in the adjacent normal gastric mucosal tissues. Further study showed a positive correlation between the expression level of MTDH and 5-FU resistance. MTDH overexpression in MKN45 cells increased the levels of P-glycoprotein (P-gp) and promoted 5-FU resistance, while inhibition of MTDH showed the opposite result. The simultaneous inhibition of autophagy and overexpression of MTDH decreased the levels of P-gp and inhibited 5-FU resistance. Moreover, MTDH induced AMPK phosphorylation, regulated ATG5 expression, and finally influenced autophagy, suggesting that MTDH may activate autophagy via the AMPK/ATG5 signalling pathway. Our findings reveal a unique mechanism by which MTDH promotes GC chemoresistance and show that MTDH is a potential target for improved chemotherapeutic sensitivity and GC patient survival. Conclusions: MTDH-stimulated cancer resistance to 5-FU may be mediated through autophagy activated by the AMPK/ATG5 pathway in GC.

Publisher

S. Karger AG

Subject

Physiology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3