TRIM33 Modulates Inflammation and Airway Remodeling of PDGF-BB-Induced Airway Smooth-Muscle Cells by the Wnt/β-Catenin Pathway

Author:

Li Jia,Wang Xuyan,Su Yufei,Hu Shuwen,Chen Jing

Abstract

Asthma is a chronic airway disease involving airway inflammation and remodeling. Studies showed that tripartite motif-containing protein 33 (TRIM33) regulated natural immunity, inflammation, and pulmonary fibrosis. However, the role and regulatory mechanism of TRIM33 in children’s asthma are unclear. In this study, the TRIM33 expressions in serum samples and platelet-derived growth factor BB (PDGF-BB)-induced airway smooth-muscle cells (ASMCs) were evaluated. A gain-of-function experiment was performed, and cell proliferation and migration were detected using CCK-8 and wound healing assays. Besides, the protein levels of EMT biomarkers and airway-remodeling markers were determined by Western blot assay. ELISA analyzed the contents of IL-1β, IL-6, and TNF-α in the supernatant. The modulation of Smad4 expression and subsequent activation of Wnt/β-catenin by TRIM33 were also assessed. We found that TRIM33 was downregulated in the serum from children who were asthma patients and PDGF-BB-induced ASMCs. TRIM33 overexpression showed decrease of PDGF-BB-induced ASMC proliferation and migration. Moreover, the augment of TRIM33 reduced the PDGF-BB-induced cell EMT and airway-remodeling marker levels and suppressed the secretions of inflammatory cytokines in PDGF-BB-induced ASMCs. Additionally, TRIM33 overexpression inhibited activation of Wnt/β-catenin via reducing Smad4 expression to regulate asthma inflammation and airway remodeling. All in all, our study revealed that TRIM33 expression was downregulated in children who were asthma patients and PDGF-BB-induced ASMCs. TRIM33 modulated PDGF-BB-induced inflammation and airway remodeling of ASMCs by the Wnt/β-catenin pathway via regulating Smad4, which may provide a new treatment direction for asthma.

Publisher

S. Karger AG

Subject

Immunology,General Medicine,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3