Long Non-Coding RNA RP11-789C1.1 Suppresses Epithelial to Mesenchymal Transition in Gastric Cancer Through the RP11-789C1.1/MiR-5003/E-Cadherin Axis

Author:

Chen Zehong,Wu Jialin,Huang Wensheng,Peng Jianjun,Ye Jinning,Yang Liang,Yuan YuJie,Chen Chuangqi,Zhang Changhua,Cai Shirong,He Yulong,Wu Suijing,Song Wu

Abstract

Background/Aims: Gastric cancer (GC) is a common malignancy with a global incidence that ranks fourth among all tumor types. Epithelial-to-mesenchymal transition (EMT) is a tumor biological process with a role in GC cell metastasis. Long non-coding RNAs (lncRNAs) and microRNAs possess important regulatory functions at the cellular level and in diverse pathophysiological processes. This study was conducted to investigate whether lncRNA RP11-789C1.1 regulates EMT in GC by mediating the miR-5003/E-cadherin pathway. Methods: RP11-789C1.1 and miR-5003 expression was detected in GC specimens and cell lines by quantitative real-time PCR. Western blotting and immunohistochemistry were performed to detect EMT markers in GC. Cell Counting Kit 8 assays were carried out to explore cell proliferation. Wound healing and Transwell assays were conducted to determine the migration and invasion of GC cells. To clarify the correlation between RP11-789C1.1, miR-5003, and E-cadherin, dual-luciferase reporter assays were applied. Results: LncRNA RP11-789C1.1 was significantly down-regulated in GC patients and cell lines, along with the concomitant up-regulation of miR-5003. Silencing RP11-789C1.1 and over-expressing miR-5003 significantly promoted the tumor behavior of GC cells. Dual-luciferase reporter assays confirmed that miR-5003 was the target of both RP11-789C1.1 and E-cadherin. Furthermore, at both the mRNA and protein level, silencing RP11-789C1.1 remarkably reduced the expression of E-cadherin and promoted EMT, which were reversed by knocking down miR-5003. Conclusions: LncRNA RP11-789C1.1 inhibited EMT in GC through the RP11-789C1.1/miR-5003/E-cadherin axis, which could be a promising therapeutic target for GC.

Publisher

S. Karger AG

Subject

Physiology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3