Mesenchymal Stem Cells Modified with Heme Oxygenase-1 Have Enhanced Paracrine Function and Attenuate Lipopolysaccharide-Induced Inflammatory and Oxidative Damage in Pulmonary Microvascular Endothelial Cells

Author:

Chen Xuxin,Zhang Yinliang,Wang Wenjing,Liu Zhenqian,Meng Jiguang ,Han Zhihai

Abstract

Background/Aims: Bone marrow-derived mesenchymal stem cell (BM-MSC) transplantation has therapeutic effects on endothelial damage during acute lung injury (ALI). Heme oxygenase-1 (HO-1) can restore homeostasis and implement cytoprotective defense functions in many pathologic states. Therefore, we explored whether transduction of HO-1 into BM-MSCs (MSCs-HO-1) would have an increased beneficial effect on lipopolysaccharide (LPS)-induced inflammatory and oxidative damage in human pulmonary microvascular endothelial cells (PVECs). Methods: MSCs were isolated from rat bone marrow and transfected with the HO-1 gene by a lentivirus vector. The phenotype and multilineage differentiation of MSCs were assessed. MSCs or MSCs-HO-1 were co-cultured with PVECs using a transwell system, and LPS was added to induce PVEC injury. The production of reactive oxygen species (ROS), and the activities of lipid peroxide (LPO), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in PVECs were determined by flow cytometry and colorimetric assays, respectively. The levels of human PVEC-derived tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 in the supernatants of the co-culture system, and the activity of nuclear transcription factor-κB and NF-E2-related factor 2 (Nrf2) in PVECs were examined by enzyme-linked immunosorbent assay (ELISA). The mRNA expression of TNF-α, IL-1β and IL-6 in PVECs was detected by quantitative real-time polymerase chain reaction (qRT-PCR), HO-1 expression and enzymatic activity in PVECs and the influence of zinc protoporphyrin (ZnPP) or HO-1 small interfering RNA on the above inflammatory and oxidative stress markers were evaluated. In addition, the expression of rat MSC-derived hepatocyte growth factor (HGF) and IL-10 was determined by ELISA and qRT-PCR. Results: MSCs showed no significant changes in phenotype or multilineage differentiation after transduction. LPS strongly increased the production of inflammatory and oxidative stress indicators, as well as decreased the levels of antioxidant components and the activity of Nrf2 in PVECs. MSC co-cultivation ameliorated these detrimental effects in PVECs and MSCs-HO-1 further improved the damage to PVECs induced by LPS when compared with MSCs alone. The beneficial effects of MSCs-HO-1 were dependent on HO-1 overexpression and may be attributed to the enhanced paracrine production of HGF and IL-10. Conclusion: MSCs-HO-1 have an enhanced ability to improve LPS-induced inflammatory and oxidative damage in PVECs, and the mechanism may be partially associated with the enhanced paracrine function of the stem cells. These data encourage further testing of the beneficial effects of MSCs-HO-1 in ALI animal models.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3