Biallelic Deletion of <i>PEX26</i> Exon 4 in a Boy with Phenotypic Features of both Zellweger Syndrome and Infantile Refsum Disease

Author:

Yalçınkaya Burhanettin,Sağlam Kübra Adanur,Terali Kerem,Tekin Emine,Taslak Hava,Türkyılmaz Ayberk

Abstract

<b><i>Introduction:</i></b> Peroxisome biogenesis disorders (PBDs) encompass a group of diseases marked by clinical and genetic heterogeneity. Phenotypes linked to PBDs include Zellweger syndrome, neonatal adrenoleukodystrophy, infantile Refsum disease (IRD), rhizomelic chondrodysplasia punctata type 1, and Heimler syndrome. PBD phenotypes manifest through hypotonia, developmental delay, facial dysmorphism, seizures, liver dysfunction, sensorineural hearing loss, and retinal dystrophy. <b><i>Methods:</i></b> The proband underwent comprehensive clinical evaluation, followed by whole-exome sequencing (WES) coupled with copy number analysis (CNV), aimed at identifying potential disease-causing variants aligning with the observed phenotype. <b><i>Results:</i></b> Our findings detail an individual exhibiting developmental delay, hearing loss, visual impairment, hepatomegaly, and splenomegaly, attributed to a biallelic deletion of exon 4 in the <i>PEX26</i> gene. The WES analysis of the index case did not uncover any pathogenic/likely pathogenic single-nucleotide variations that could account for the observed clinical findings. However, the CNV data derived from WES revealed a homozygous deletion in exon 4 of the <i>PEX26</i> gene (NM_001127649.3), providing a plausible explanation for the patient’s clinical features. The exon 4 region of <i>PEX26</i> encodes the transmembrane domain of the protein. The transmembrane domain plays a crucial role in anchoring the protein within lipid bilayers, and its absence can disrupt proper localization and functioning. As a result, this structural alteration may impact the protein’s ability to facilitate essential cellular processes related to peroxisome biogenesis and function. <b><i>Conclusion:</i></b> The index patient, which presented with hearing loss, retinal involvement and hepatic dysfunction in adolescence age, has atypical clinical course that can be considered unusual for Zellweger syndrome (ZS) and IRD phenotypes, and its rare genotypic data (in-frame single exon deletion) expands the PBD disease spectrum. This study revealed for the first time that PEX26 protein transmembrane domain loss exhibits an unusual course with clinical findings of IRD and ZS phenotypes. WES studies, incorporating CNV analyses, empower the identification of novel genetic alterations in genes seldom associated with gross deletion/duplication variations, such as those in the <i>PEX26</i> gene. This not only enhances diagnostic rates in rare diseases but also contributes to broadening the spectrum of causal mutations.

Publisher

S. Karger AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3