Adipose-Derived Stromal/Stem Cell Culture: Effects of Different Concentrations of Human Platelet Lysate in Media

Author:

Ballesteros Olga R.,Brooks Patrick T.,Haastrup Eva K.,Fischer-Nielsen Anne,Munthe-Fog Lea,Svalgaard Jesper D.

Abstract

Adipose-derived stromal/stem cells (ASCs) are being tested as a possible treatment for a wide range of diseases to exploit the immunomodulatory and regenerative potential demonstrated in vitro. Pooled human platelet lysate (pHPL) has replaced fetal bovine serum (FBS) as the preferred growth supplement because of its xeno-free origin and improved cell proliferation. Much has been done toward reducing the concentration of pHPL required when expanding ASCs. However, little is known on how increasing the concentration of pHPL affects ASC potency, which could lead to changes with possible beneficial applications. This study investigated the effect of 5, 10, or 20% pHPL in culture media on ASC proliferation and phenotypic marker expression, including chemokine receptors CXCR2, CXCR3, CXCR4, and VLA-4. Adipogenic and osteogenic properties, as well as immunosuppressive properties, including the ability to induce indoleamine-pyrrole 2,3-dioxygenase 1 (IDO1) and suppress T cell proliferation, were also examined. We observed a significant increase in cell yield (approximately 2-fold) and a corresponding reduction in population doubling time and cell volume when doubling the concentration of pHPL in the growth media. ASCs maintained expression of phenotypic surface markers CD73, CD90, and CD105 and were negative for CD45 and CD31. The ability to induce IDO1 and suppress T cell proliferation was observed as well. Adipogenesis and osteogenesis, however, seem to be increased at higher concentrations of pHPL (20% > 10% > 5%), while expression of chemokine receptors CXCR2 and CXCR3 was lower. In conclusion, increasing the pHPL concentration to 20% could be used to optimize culture conditions when producing cells for clinical treatments and may even be used to enhance beneficial ASC properties depending on the desired therapeutic effect.

Publisher

S. Karger AG

Subject

Histology,Anatomy

Reference32 articles.

1. Baer PC, Geiger H. Adipose-derived mesenchymal stromal/stem cells: Tissue localization, characterization, and heterogeneity. Stem Cells Int. 2012;2012:812693.

2. Barsotti MC, Chiara Barsotti M, Losi P, Briganti E, Sanguinetti E, Magera A, et al. Effect of platelet lysate on human cells involved in different phases of wound healing. PLoS One. 2013;8(12):e84753–11.

3. Bora P, Majumdar AS. Adipose tissue-derived stromal vascular fraction in regenerative medicine: A brief review on biology and translation. Stem Cell Res Ther. 2017;8(1):145–10.

4. Bostancioglu RB, Gurbuz M, Akyurekli AG, Dogan A, Koparal AS, Koparal AT. Adhesion profile and differentiation capacity of human adipose tissue derived mesenchymal stem cells grown on metal ion (Zn, Ag and Cu) doped hydroxyapatite nano-coated surfaces. Colloids Surf B Biointerfaces. 2017;155:415–28.

5. Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C. Adipose-derived stem cells: isolation, expansion and differentiation. Methods. 2008;45(2):115–20.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3