Targeting Cartilage miR-195/497 Cluster for Osteoarthritis Treatment Regulates the Circadian Clock

Author:

Shi Shi,Zhang Lele,Wang Qi,Wang Qian,Li Dejian,Sun Wei,Yi Chengqing

Abstract

<b><i>Introduction:</i></b> Osteoarthritis (OA) is the most prevalent and debilitating joint disease without an effective therapeutic option. Multiple risk factors for OA have been identified, including abnormal chondrocyte miRNA secretion and circadian rhythms disruption, both of which have been found to cause progressive damage and loss of articular cartilage. Environmental disruption of circadian rhythms in mice predisposes animals to cartilage injury and OA. <b><i>Methods:</i></b> The role of miR-195/497 cluster during OA progression was verified by mouse OA model with intra-articular injection of Agomir and Antagomir. We performed micro-CT analysis, Osteoarthritis Research Society International scores, and histological analysis in mouse knee joints. RNA sequencing was performed on the mouse cartilage cell line to explore the molecular mechanism of the miR-195/497 cluster and proteins in signaling pathway were evaluated using Western blot. Senescence-associated phenotypes were detected by Western blot, senescence β-galactosidase staining, and immunofluorescence. <b><i>Results:</i></b> This study demonstrated that miR-195/497-5p expression is disrupted in OA with senescent chondrocytes. In addition, miR-195/497-5p influenced the circadian rhythm of mice chondrocytes by modulating the expression of the Per2 protein, resulting in the gradual degradation of articular cartilage. We found that the miR-195/497 cluster targets DUSP3 expression. The deletion of the miR-195/497 cluster increased the level of DUSP3 expression and decreased the levels of phosphorylated ERK 1/2 and CREB. Per2 transcription is upregulated by stimulating CREB and ERK 1/2 phosphorylation. <b><i>Conclusion:</i></b> Our findings identify a regulatory mechanism connecting chondrocyte miR-195/497-5p to cartilage maintenance and repair and imply that circadian rhythm disturbances affected by miR-195/497-5p are risk factors for age-related joint diseases such as OA.

Publisher

S. Karger AG

Subject

Geriatrics and Gerontology,Aging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3