Deep Learning in the Identification of Electroencephalogram Sources Associated with Sexual Orientation

Author:

Ziogas AnastasiosORCID,Mokros AndreasORCID,Kawohl Wolfram,de Bardeci Mateo,Olbrich Ilyas,Habermeyer Benedikt,Habermeyer Elmar,Olbrich SebastianORCID

Abstract

<b><i>Introduction:</i></b> It is unclear if sexual orientation is a biological trait that has neurofunctional footprints. With deep learning, the power to classify biological datasets without an a priori selection of features has increased by magnitudes. The aim of this study was to correctly classify resting-state electroencephalogram (EEG) data from males with different sexual orientation using deep learning and to explore techniques to identify the learned distinguishing features. <b><i>Methods:</i></b> Three cohorts (homosexual men, heterosexual men, and a mixed sex cohort), one pretrained network on sex classification, and one newly trained network for sexual orientation classification were used to classify sex. Further, Grad-CAM methodology and source localization were used to identify the spatiotemporal patterns that were used for differentiation by the networks. <b><i>Results:</i></b> Using a pretrained network for classification of males and females, no differences existed between classification of homosexual and heterosexual males. The newly trained network was able, however, to correctly classify the cohorts with a total accuracy of 83%. The retrograde activation using Grad-CAM technology yielded distinctive functional EEG patterns in the Brodmann area 40 and 1 when combined with Fourier analysis and a source localization. <b><i>Discussion:</i></b> This study shows that electrophysiological trait markers of male sexual orientation can be identified using deep learning. These patterns are different from the differentiating signatures of males and females in a resting-state EEG.

Publisher

S. Karger AG

Subject

Biological Psychiatry,Psychiatry and Mental health,Neuropsychology and Physiological Psychology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3