A Clinical Score to Predict Severe Acute Kidney Injury in Chinese Patients after Cardiac Surgery

Author:

Che Miaolin,Wang Xudong,Liu Shang,Xie Bo,Xue Song,Yan Yucheng,Zhu Mingli,Lu Renhua,Qian Jiaqi,Ni Zhaohui,Zhang Weiming,Wang Bingshun

Abstract

<b><i>Background/Aims:</i></b> Cardiac surgery-associated severe acute kidney injury (SAKI) is associated with high mortality and poor quality of life. A prognostic score for SAKI may enable prevention of complications. Methods: This observational study of 2,552 patients undergoing cardiac surgery from January 2006 to December 2011 in our institution established associations between predictor variables and postoperative SAKI from a cohort of 1,692 patients and developed a clinical score that was assessed in a validation cohort of 860 patients. <b><i>Results:</i></b> Postoperative SAKI occurred in 262 ­patients (10.3%). We identified 7 independent and significant risk factors in the derivation model (adjusted OR 95% CI): age ≥81 years (vs. age &#x3c; 40 years, 4.30, 1.52–12.21), age 61–80 years (vs. age &#x3c; 40 years, 2.84, 1.24–6.52), age 41–60 years (vs. age &#x3c; 40 years, 1.62, 0.68–3.87), hypertension (1.65, 1.13–2.39), previous cardiac surgery (3.62, 1.27–10.32), ­hyperuricemia (2.02, 1.40–2.92), prolonged operation time (1.32, 1.17–1.48), postoperative central venous pressure &#x3c; 6 mm H<sub>2</sub>O (3.53, 2.38–5.23), and low postoperative cardiac output (4.78, 2.97–7.69). The 7-variable risk prediction model had acceptable performance characteristics in the validation cohort (C statistic 0.80, 95% CI 0.74–0.85). The difference in the C statistic was 0.21 (95% CI 0.12–0.29, <i>p</i> &#x3c; 0.001) compared with the Cleveland Clinic score. <b><i>Conclusion:</i></b> We developed and validated a practical risk prediction model for SAKI after cardiac surgery based on routinely available perioperative clinical and laboratory data. The prediction model can be easily applied at the bedside and provides a simple and interpretable estimation of risk.

Publisher

S. Karger AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3