miR-449a Suppresses Tamoxifen Resistance in Human Breast Cancer Cells by Targeting ADAM22

Author:

Li Jun,Lu Mingjie,Jin Jiao,Lu Xiyi,Xu Tongpeng,Jin Shidai

Abstract

Background/Aims: Most of estrogen receptor positive breast cancer patients respond well initially to endocrine therapies, but often develop resistance during treatment with selective estrogen receptor modulators (SERMs) such as tamoxifen. Altered expression and functions of microRNAs (miRNAs) have been reportedly associated with tamoxifen resistance. Thus, it is necessary to further elucidate the function and mechanism of miRNAs in tamoxifen resistance. Methods: Tamoxifen sensitivity was validated by using Cell Counting Kit-8 in tamoxifen-sensitive breast cancer cells (MCF-7, T47D) and tamoxifen-resistant cells (MCF-7/TAM, T47D/ TAM). Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the expression level of miR-449a in tamoxifen-sensitive/-resistant cells and patient serums. Dual-luciferase assay was used to identify the binding of miR-449a and predicted gene ADAM22. The expression level of ADAM22 was determined by qRT-PCR and western blotting in miR-449a +/- breast cancer cells. Subsequently, rescue experiments were carried out to identify the function of ADAM22 in miR-449a-reduced tamoxifen resistance. Finally, Gene ontology (GO) and Protein-protein interaction analyses were performed to evaluate the potential mechanisms of ADAM22 in regulating tamoxifen resistance. Results: MiR-449a levels were downregulated significantly in tamoxifen-resistant breast cancer cells when compared with their parental cells, as well as in clinical breast cancer serum samples. Overexpression of miR-449a re-sensitized the tamoxifen-resistant breast cancer cells, while inhibition of miR-449a conferred tamoxifen resistance in parental cells. Luciferase assay identified ADAM22 as a direct target gene of miR-449a. Additionally, silencing of ADAM22 could reverse tamoxifen resistance induced by miR-449a inhibition in ER-positive breast cancer cells. GO analysis results showed ADAM22 was mainly enriched in the biological processes of cell adhesion, cell differentiation, gliogenesis and so on. Protein-protein interaction analyses appeared that ADAM22 might regulate tamoxifen resistance through PPARG, LGI1, KRAS and LYN. Conclusion: Decreased miR-449a causes the upregulation of ADAM22, which induces tamoxifen resistance of breast cancer cells. These results suggest that miR-449a, functioning by targeting ADAM22, contributes to the mechanisms underlying breast cancer endocrine resistance, which may provide a potential therapeutic strategy in ER-positive breast cancers.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3