WBP2 Downregulation Inhibits Proliferation by Blocking YAP Transcription and the EGFR/PI3K/Akt Signaling Pathway in Triple Negative Breast Cancer

Author:

Song Hongming,Wu Tianqi,Xie Dan,Li Dengfeng,Hua Kaiyao,Hu Jiashu,Fang Lin

Abstract

Background/Aims: Dysregulated expression of WW domain-binding protein 2 (WBP2) is associated with poor prognosis in ER+ breast cancer patients. However, its role in triple negative breast cancer (TNBC) has not been previously assessed. Therefore, we aimed to elucidate the functional mechanism of WBP2 in TNBC cells. Methods: qRT-PCR, western blotting, and immunohistochemical staining were used to evaluate WBP2 expression in TNBC patient tumors and cell lines. HCC1937 and MDA-MB-231 cells transiently transfected with WBP2 small interfering RNA (siRNA), miR-613 mimics, or miR-613 inhibitors were subject to assays for cell viability, apoptosis and cell cycle distribution. Co-immunoprecipitation, western blotting or qRT-PCR were employed to monitor changes in signaling pathway-related genes and proteins. Luciferase assays were performed to assess whether WBP2 is a direct target of miR-613. The effect of miR-613 on tumor growth was assessed in vivo using mouse xenograft models. Results: The expression of WBP2 was upregulated in TNBC tissues and cells. Expression of WBP2 was significantly correlated with Ki67 in TNBC patients. Knockdown of WBP2 inhibited cellular proliferation, promoted apoptosis, and induced cell cycle arrest of TNBC cells. miR-613 directly bound to the 3’-untranslated region (3’-UTR) of WBP2 and regulated the expression of WBP2. Moreover, miR-613 reduced the expression of WBP2 and suppressed tumor growth of TNBC cells in vivo. Knockdown of WBP2 inhibited YAP transcription and the EGFR/PI3K/Akt signaling pathway in TNBC cells, and these effects were reversed by inhibition of miR-613. Conclusion: WBP2 overexpression is associated with the poor prognosis of TNBC patients and the miR-613-WBP2 axis represses TNBC cell growth by inactivating YAP-mediated gene expression and the EGFR/PI3K/Akt signaling pathway.

Publisher

S. Karger AG

Subject

Physiology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3