Continuous Renal Replacement Therapy during Extracorporeal Membrane Oxygenation: Circuit Haemodynamics and Circuit Failure

Author:

Sansom Benjamin,Riley BrookeORCID,Udy Andrew,Sriram Shyamala,Presneill Jeffrey,Bellomo RinaldoORCID

Abstract

Introduction: Treatment with continuous renal replacement therapy (CRRT) is common during extracorporeal membrane oxygenation (ECMO). Such ECMO-CRRT has specific technical characteristics, which may affect circuit life. Accordingly, we studied CRRT haemodynamics and circuit life during ECMO. Methods: ECMO and non-ECMO-CRRT treatments in two adult intensive care units were compared using data collected over a 3-year period. A potential predictor of circuit survival identified in a 60% training data subset as a time-varying covariate within a Cox proportional hazard model was subsequently assessed in the complementary remaining data (40%). Results: Median [interquartile range] CRRT circuit life was greater when associated with ECMO (28.8 [14.0–65.2] vs. 20.2 [9.8–40.2] h, p < 0.0001). Access, return, prefilter, and effluent pressures were also greater during ECMO. Higher ECMO flows were associated with higher access and return pressures. Classification and regression tree analysis identified an association between high access pressures and accelerated circuit failure, while both first access pressures ≥190 mm Hg (HR 1.58 [1.09–2.30]) and patient weight (HR 1.85 [1.15–2.97] third tertile vs. first tertile) were independently associated with circuit failure in a multivariable Cox model. Access dysfunction was associated with a stepwise increase in transfilter pressure, suggesting a potential mechanism of membrane injury. Conclusion: CRRT circuits used in conjunction with ECMO have a longer circuit life than usual CRRT despite exposure to higher circuit pressures. Markedly elevated access pressures, however, may predict early CRRT circuit failure during ECMO, possibly via progressive membrane thrombosis as evidenced by increased transfilter pressure gradients.

Publisher

S. Karger AG

Subject

Nephrology,Hematology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3