Podocnemis expansa Turtles Hint to a Unifying Explanation for the Evolution of Temperature-Dependent Sex Determination in Long-Lived and Short-Lived Vertebrates

Author:

Valenzuela Nicole

Abstract

The adaptive significance of temperature-dependent sex determination (TSD) remains elusive for many long-lived reptiles. Various hypotheses proposed potential ecological drivers of TSD. The Charnov-Bull’77 model remains the most robust and explains the maintenance of TSD in short-lived vertebrates, where sex ratios correlate with seasonal temperatures within years that confer sex-specific fitness (colder springs produce females who grow larger and gain in fecundity, whereas warmer summers produce males who mature at smaller size). Yet, evidence of fitness differentials correlated with incubation temperature is scarce for long-lived taxa. Here, it is proposed that the Charnov-Bull’77 model applies similarly to long-lived taxa, but at a longer temporal scale, by revisiting ecological and genetic data from the long-lived turtle <i>Podocnemis expansa</i>. After ruling out multiple alternatives, it is hypothesized that warmer-drier years overproduce females and correlate with optimal resource availability in the flood plains, benefitting daughters more than sons, whereas resources are scarcer (due to reduced flowering/fruiting) during colder-rainier years that overproduce males, whose fitness is less impacted by slower growth rates. New technical advances and collaborative interdisciplinary efforts are delineated that should facilitate testing this hypothesis directly, illuminating the understanding of TSD evolution in <i>P. expansa</i> and other long-lived TSD reptiles.

Publisher

S. Karger AG

Subject

Developmental Biology,Embryology,Endocrinology, Diabetes and Metabolism

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3